UNE HISTOIRE DE LA GÉOMÉTRIE

Jean VALLÈS (UPPA) Izotges 16 novembre 2011

PLAN DE L'EXPOSÉ

- 1. Les éléments d'Euclide 300 avant J-C.
- 2. La renaissance Italienne XV. La perspective, la géométrie projective.
- 3. Le XIX et les nouvelles géométries.
- 4. La relativité générale.

1. LES ÉLÉMENTS D'EUCLIDE

Chef-d'oeuvre inégalé jusqu'aux *Principes Mathématiques* de Newton (fin XVII). Luca Pacioli, moine et mathématicien italien, enseigne les éléments d'Euclide à la fin du XV.

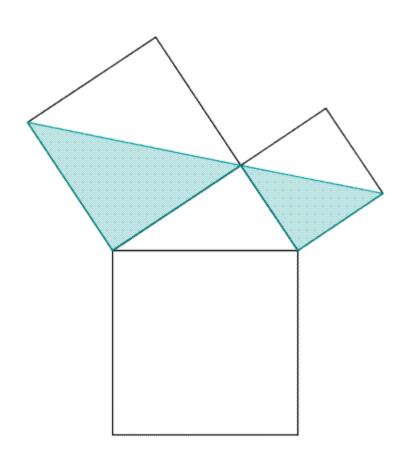
LES ÉLÉMENTS D'EUCLIDE

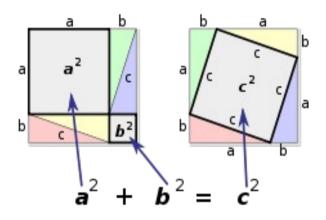
Compilation du savoir organisée en 13 livres.

- livres 1-6 Géométrie plane.
- livres 7-9 Arithmétique.
- livre 10 Nombres irrationnels d'Eudoxe (élève de Platon).
- livres 11-13 Géométrie dans l'espace, polyèdres réguliers.

THÉORÈMES CLASSIQUES GÉOMÉTRIE PLANE

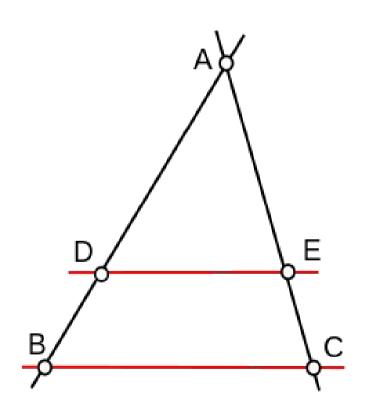
• Le théorème de Pythagore (550 av. J-C)





THÉORÈMES CLASSIQUES GÉOMÉTRIE PLANE

• Le théorème de Thalès (600 av. J-C)



$$\frac{AD}{AB} = \frac{AE}{AC} = \frac{DE}{BC}$$

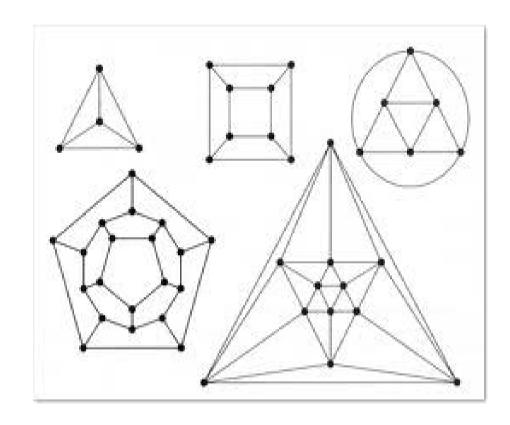
ALGORITHME D'EUCLIDE

Il calcule le PGCD de deux nombres A et B en effectuant des divisions successives. Le PGCD est le dernier reste non-nul.

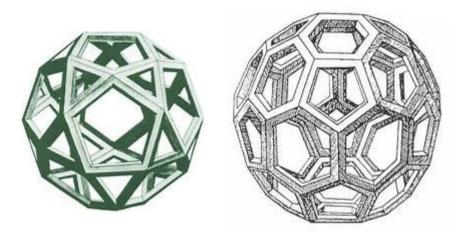
$$9 = 3.3 + 0$$

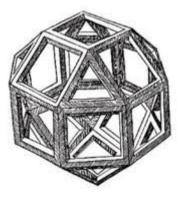
Polyèdres réguliers, diagrammes Schleggel

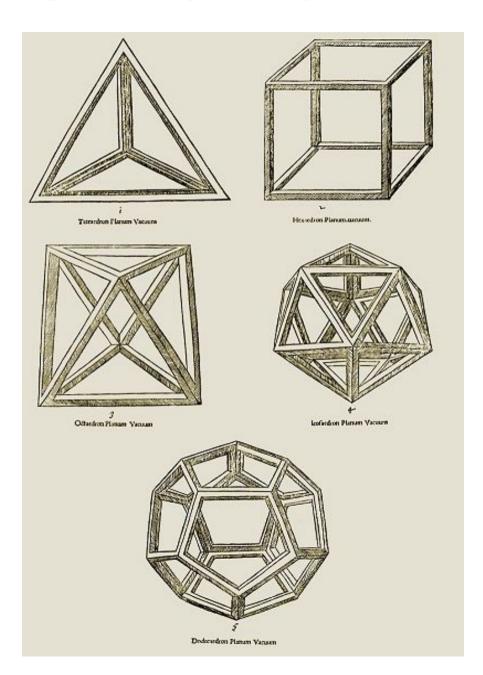
polyèdres les 5 solides de platon	Sommets	Arêtes	Faces
Tétraèdre	4	6	4
Hexaèdre (ou cube)	8	12	6
Octaèdre	6	12	8
Dodécaèdre 💮	20	30	12
Icosaèdre	12	30	20



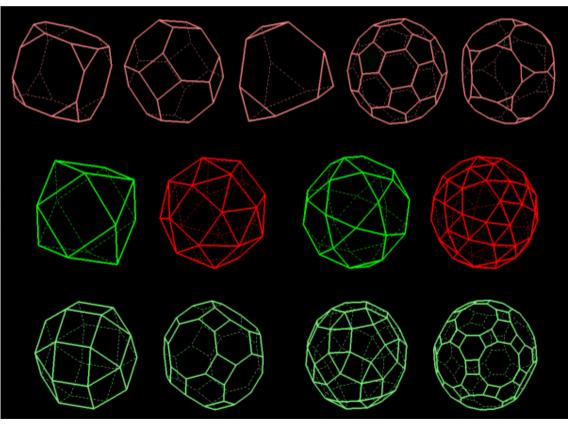
Les polyèdres par Vinci.







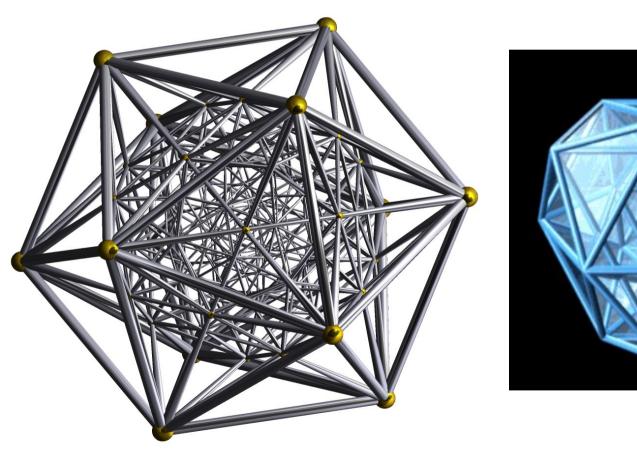
• 13 Polyèdres semi-réguliers. Les faces sont formées de polygones distincts.



- Solides de Platon. Formule d'Euler (XVIII)
 Faces-Arêtes+Sommets=2.
- Classification des surfaces (Poincaré XX).
- Les groupes de symétrie des polyèdres réguliers sont des groupes de Lie exceptionnels.

POLYTOPES

• En dimension 4.



Problèmes posés par Euclide

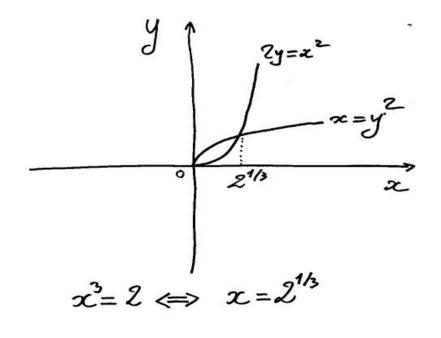
- La quadrature du cercle (résolu en 1882 : Impossible)
- La duplication du cube (résolu en 1837 : Impossible)
- La trisection de l'angle (résolu en 1837 : Impossible en général)
- Les polygones réguliers constructibles (caractérisés en 1799 par Gauss)

DUPLICATION DU CUBE

- Dupliquer un cube c'est construire le nombre réel dont le cube vaut 2.
- Au XI siècle le poète Omar Khayyam propose de le construire comme intersection de paraboles.
- Ce problème conduira à la résolution des équations de degré 3 par Cardan début XVI.

DUPLICATION DU CUBE

Elle conduira à la résolution des cubiques

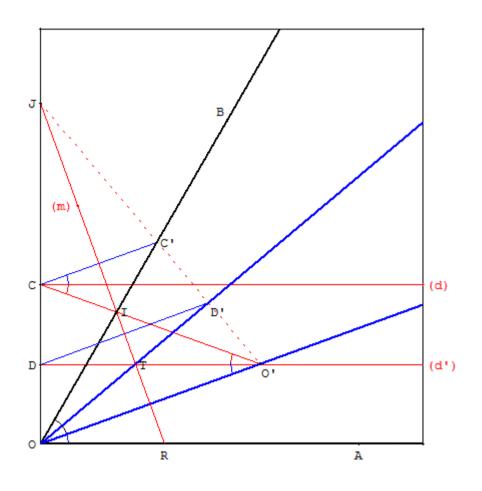


Formules de CARDAN

$$\begin{array}{c}
\chi^{3} + p\chi + q = 0 \\
\Rightarrow \\
\chi = \left(-\frac{q}{2} + \sqrt{\frac{q^{2}}{4} + \frac{p^{3}}{24}}\right)^{\frac{1}{3}} \left(-\frac{q}{2} - \sqrt{\frac{q^{2} + p^{3}}{4}}\right)^{\frac{1}{3}} \\
\frac{deg(z^{1h}) = n}{deg(\pi t) = \infty}
\end{array}$$

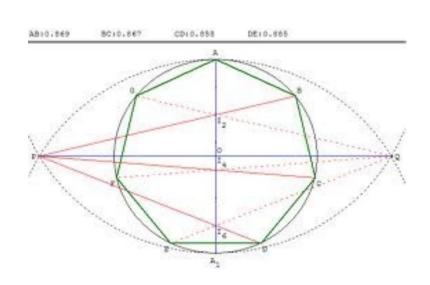
TRISECTION DE L'ANGLE

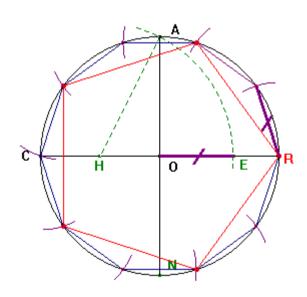
Abe en 1980 applique l'origami à la trisection.



Polygones réguliers

Un polygone à n côtés est constructible si et seulement si $n=2^mp_1...p_r$, p_i différents deux à deux, tous premiers de la forme $2^{2^a}+1$.





AXIOMES D'EUCLIDE

Les cinq axiomes sur lesquels repose la géométrie sont :

- Il existe toujours une droite qui passe par deux points du plan.
- Tout segment peut être étendu suivant sa direction en une droite.
- À partir d'un segment, il existe un cercle dont le centre est un des points du segment et dont le rayon est la longueur du segment.
- Tous les angles droits sont égaux entre eux.
- Étant donné un point et une droite ne passant pas par ce point, il existe une seule droite passant par ce point et parallèle à la première.

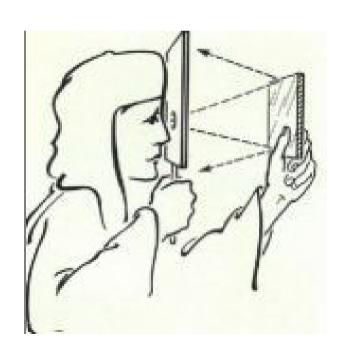
Les tentatives de preuve du 5e postulat

Nouvelles définitions du parallélisme entre deux droites. Remplacer l'axiome d'Euclide par un axiome équivalent.

Hypothèse: ce postulat est faux (Saccheri, Legendre XVIII) Étude des conséquences. Elles conduisent au seuil de la découverte (Gauss, Lobatchevski et Bolyai) des géométries non euclidiennes.

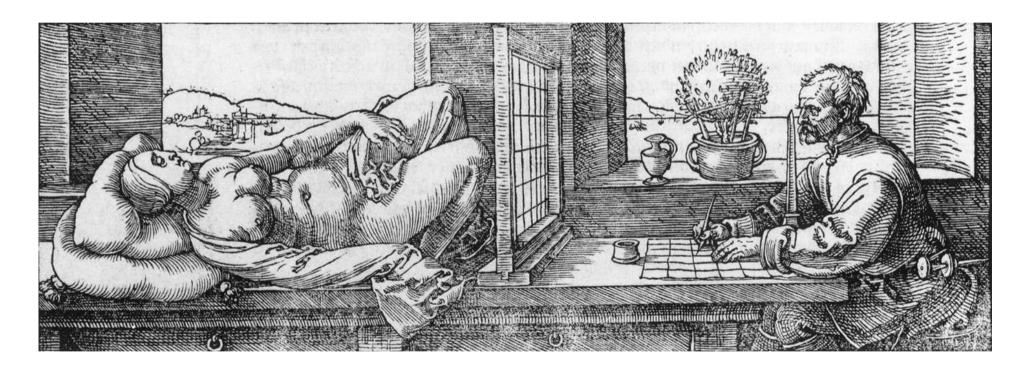
2. LA RENAISSANCE

 Problème pratique : Représenter l'espace tridimensionnel sur une surface plane, la toile du peintre.



LA PERSPECTIVE

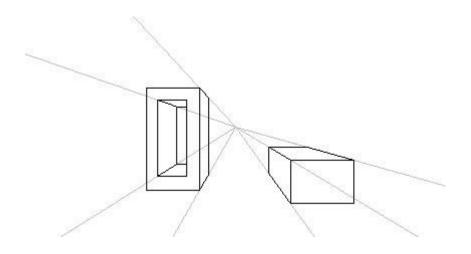
"Un tableau est une fenêtre à travers laquelle nous regardons une section du monde visible" (Alberti, 1436).



LA PERSPECTIVE (SUITE)

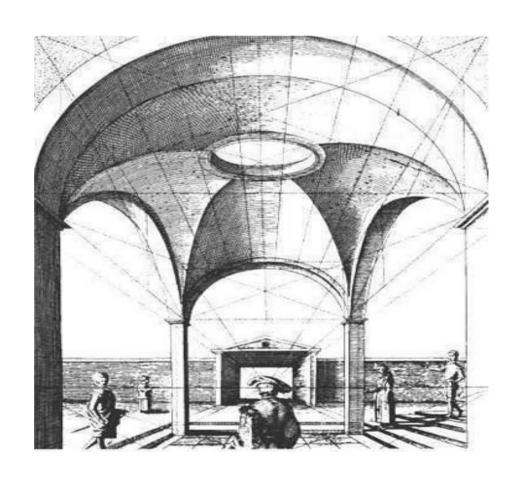
Les notions de point à l'infini et de plan projectif n'apparaîtront qu'un siècle plus tard dans le travail du mathématicien français Desargues.

Le(s) point(s) de fuite(s) est le point central, face à l'oeil de l'observateur.



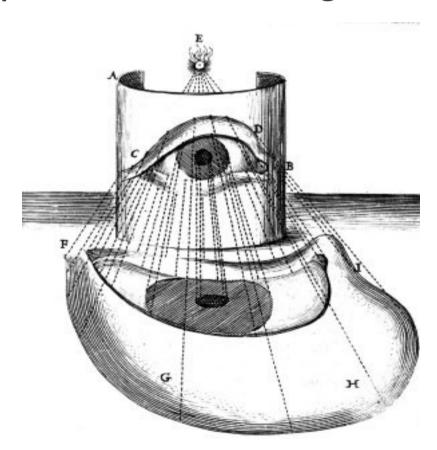
POINT DE FUITE/CENTRAL

• Les parallèles convergent vers l'observateur.



PROJECTION ET ANAMORPHOSE

• Si l'observateur n'est pas face au tableau des distorsions pénibles de l'image surviennent.

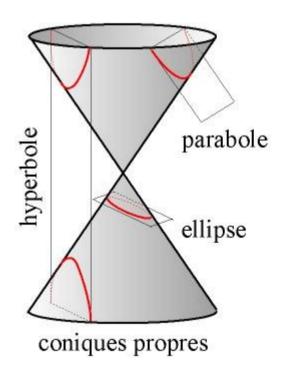


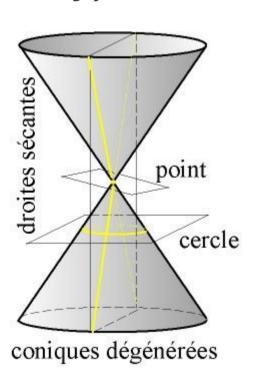
ANAMORPHOSE

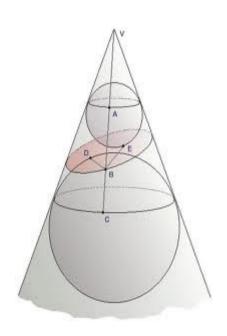
Le peintre Holbein s'en est amusé.

LA GÉOMÉTRIE PROJECTIVE

"La géométrie projective est l'étude des propriétés que les figures ont en commun avec leur ombre" (J. Gray).







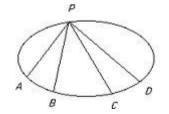
GÉOMÉTRIE PROJECTIVE

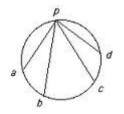
Les transformations d'une figure par projection centrale sont étudiées.

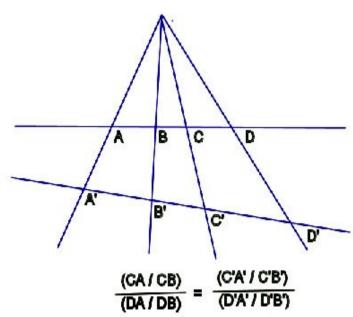
Propriétés conservées : alignement, concours

 Propriétés perdues : distance, angle, rapports de distance.

Invariant fondamental :
 le birapport.

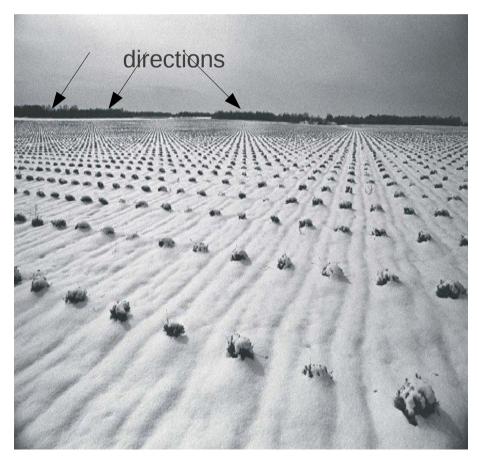






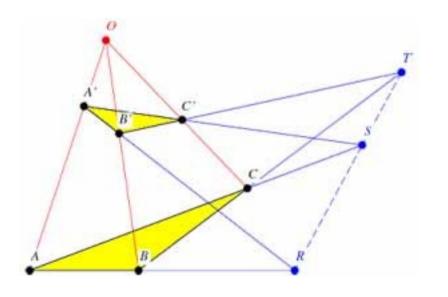
LE PLAN PROJECTIF

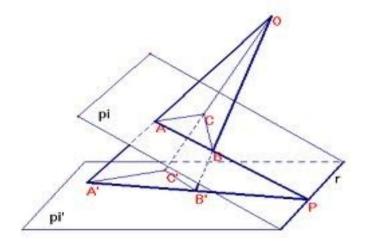
Desargues introduit les points à l'infini et même la droite de l'infini, l'horizon, qui paramètre les directions des droites parallèles.



THÉORÈME DE DESARGUES

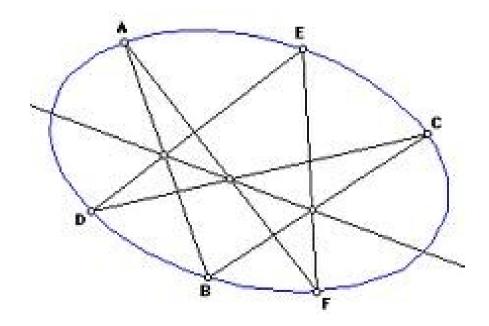
Élémentaire dans l'espace. Mais non trivial sur le plan. Si l'on ne peut augmenter la dimension il acquiert même le statut d'axiome.





THÉORÈME DE PASCAL

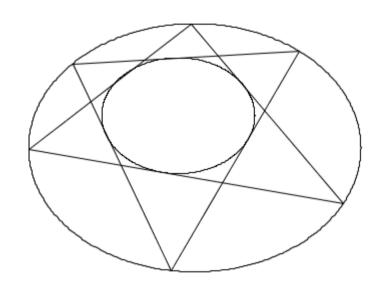
Le théorème est démontré pour un cercle (avec des relations sur les angles). Pascal en déduit le résultat sur toute conique par projection centrale.

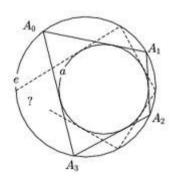


L'INVENTION DE LA GÉOMÉTRIE PROJECTIVE MODERNE

Poncelet introduit

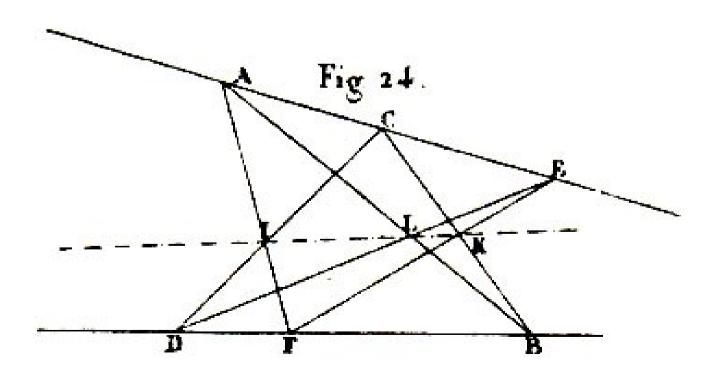
- les points complexes,
- la conservation du nombre,
- le principe de continuité,
- la dualité projective.





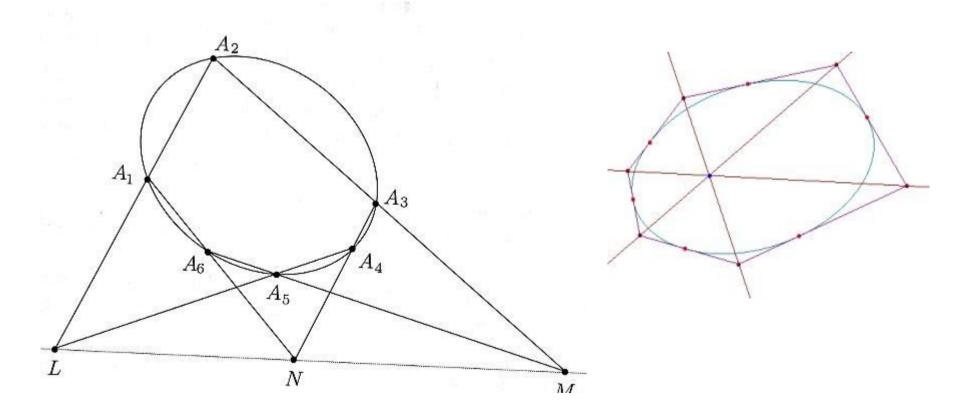
PRINCIPE DE CONTINUITÉ

• Par continuité le théorème de Pascal implique celui de Pappus (250 après J-C). L'ellipse à la limite devenant deux droites.



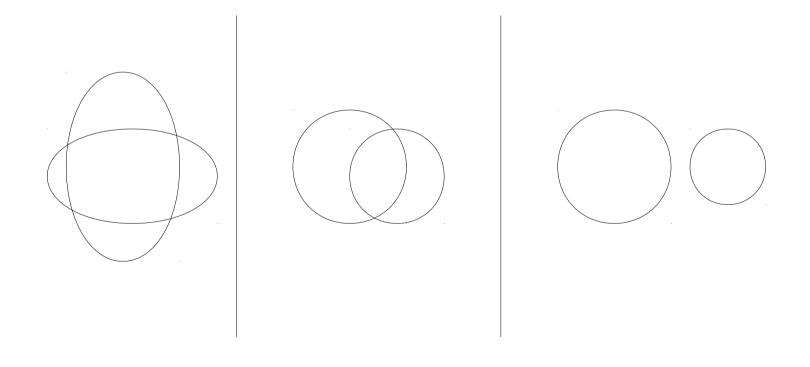
DUALITÉ PROJECTIVE

Les théorèmes de Pascal et Brianchon se déduisent l'un de l'autre par dualité. Celui de Desargues est auto-dual.



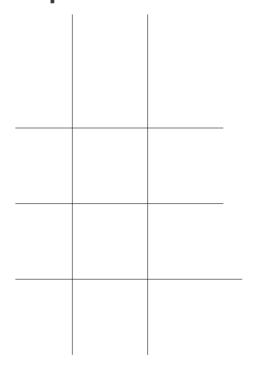
CONSERVATION DU NOMBRE

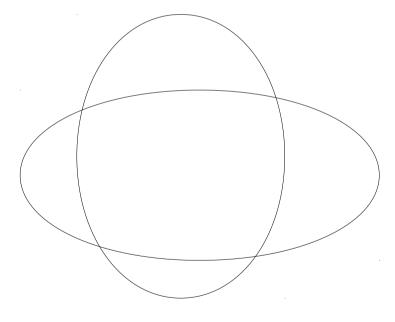
Deux coniques se coupent en 4 points, 4 réels,
2 réels et 2 complexes ou encore 4 complexes.



CONSERVATION DU NOMBRE

 Deux courbes de degré 2 et 3 se coupent en 6 points. Deux courbes de degré 2 se coupent en 4 points.





3. LES GÉOMÉTRIES NON-EUCLIDIENNES

La géométrie projective et son absence de parallèles relance la question du 5ième postulat.

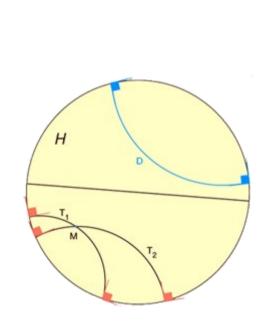
- Gauss découvre la géométrie hyperbolique mais n'ose pas publier de peur d'être incompris.
- En 1830 c'est Bolyai qui franchit le pas.
- Puis en 1850 Riemann définit la géométrie sphérique.

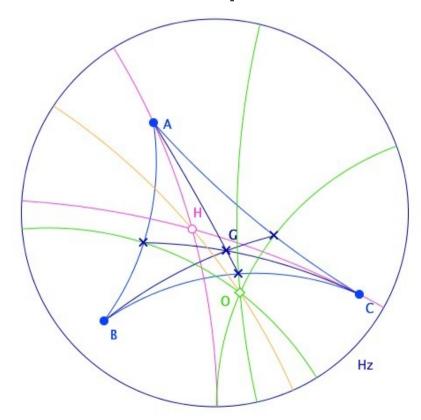
MODÈLES POUR LES GÉOMÉTRIES

- Droite : plus court chemin entre deux points.
 On les appelle des géodésiques.
- Renoncements pour avoir un modèle plan : conservation des distances, conservation des angles.
- THM : Aucune application conforme d'une partie de la sphère sur le plan ne conserve les aires.

MODÈLE DE POINCARÉ

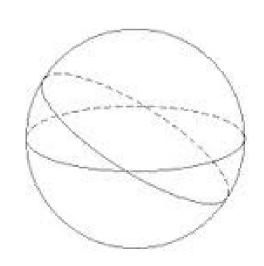
- Modèle isométrique de plan hyperbolique.
- Nouveau 5e postulat : infinité de parallèles.

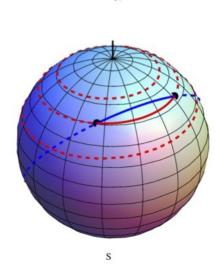




MODÈLE GÉOMÉTRIE ELLIPTIQUE

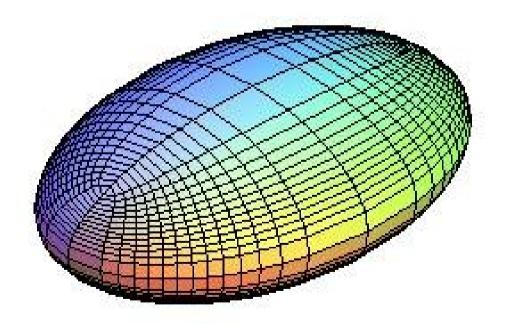
- Les géodésiques de la sphère sont les grands cercles.
- Deux grands cercles se coupent toujours.
- Nouveau 5e postulat : pas de parallèle.





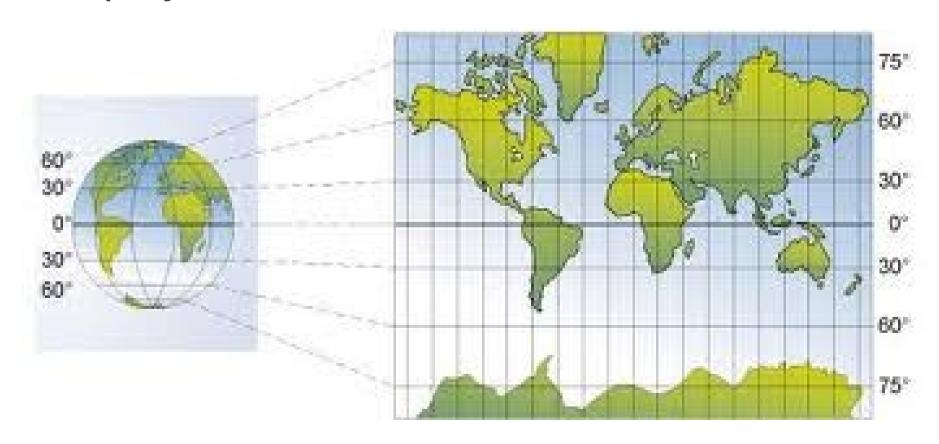
NB: GÉODÉSIQUES

Si la forme de la Terre est plus proche de l'ellipsoïde que de la sphère, cela se complique.



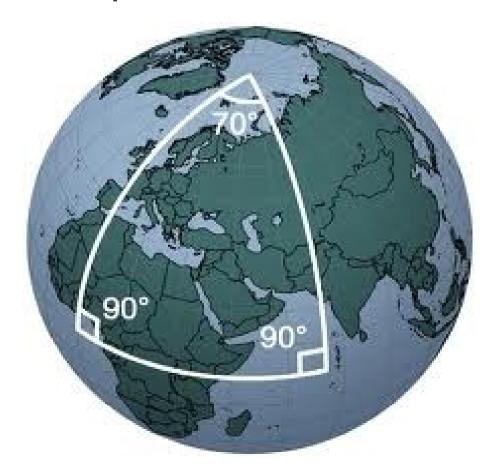
MODÈLE DE GÉOMÉTRIE ELLIPTIQUE

- Pas de modèle plan isométrique de la sphère.
- La projection de Mercator est conforme.



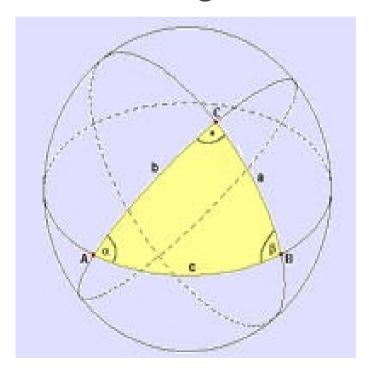
MODÈLE DE GÉOMÉTRIE ELLIPTIQUE

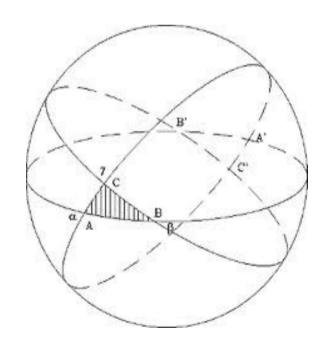
• La sphère a ses triangles mais les angles ne sont plus ce qu'ils étaient.



THÉORÈME DE GIRARD

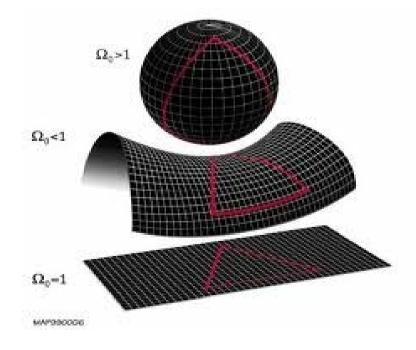
- En géométrie euclidienne la somme des angles d'un triangle quelconque est un angle plat.
- En géométrie elliptique la somme des angles d'un triangle T est égal à π +Aire(T).





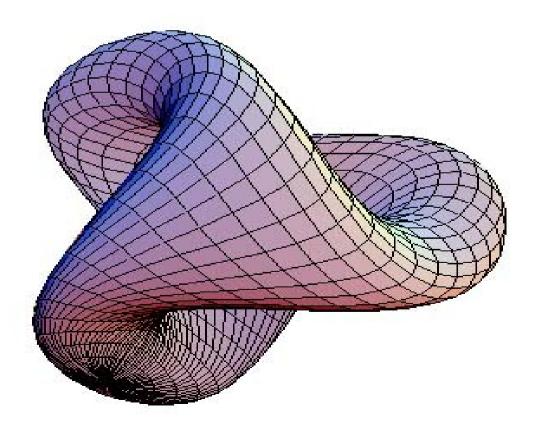
TROIS GÉOMÉTRIES

- Localement il n'existe que trois géométries.
- Courbure nulle : le plan (Σ (angles) = π).
- Courbure négative : le plan hyperbolique (Σ (angles) = π -Aire(T)).
- Courbure positive : la sphère (Σ (angles) = π +Aire(T)).



SPHÈRE: MODÈLE IMPARFAIT

Le premier postulat d'Euclide n'est pas vérifié. Il faut identifier les points antipodaux... Mais la surface ne "rentre" plus dans l'espace.

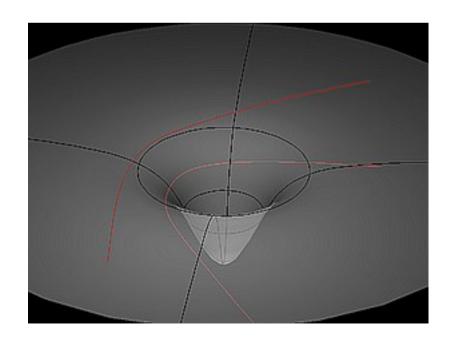


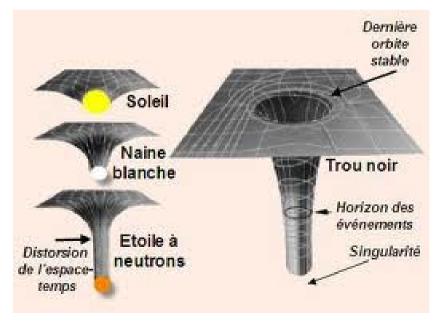
4. GÉOMÉTRIE ET RELATIVITÉ

- La géométrie hyperbolique est reliée à la théorie de la relativité.
- L'espace n'est plus euclidien. Le temps intervient comme variable. La lumière se déplace le long des géodésiques de l'univers.
- Relativité restreinte 1905 Einstein et Poincaré.
- Relativité générale 1915 Einstein et Hilbert.

GÉOMÉTRIE ET RELATIVITÉ

 La théorie de Newton disparaît au profit d'une théorie géométrique 4-dimensionnelle de l'univers ; il est courbé par la matière voire déchiré aux places des trous noirs.





GÉOMÉTRIE ET RELATIVITÉ

HOMOGÉNÉITÉ de l'univers (propriétés identiques en tout point de l'espace au même instant)

- + ISOTROPIE (propriétés en tout point indépendantes de la direction)
- = COURBURE CONSTANTE.
- Si la courbure est positive l'espace est fini, sinon il est infini.

FONDEMENTS DE LA LITTÉRATURE

- Queneau influencé par Hilbert remplace
 - "points", "droites" et "plans" par "mots", "phrases" et "paragraphes".
 - 1. Il existe une phrase comprenant deux mots donnés.
 - 2. Il n'existe pas plus d'une phrase comprenant deux mots donnés.
 - 3. Tout paragraphe comprend au moins une phrase.
 - 4. Si deux mots d'une phrase appartiennent à un paragraphe, tous les mots de cette phrase appartiennent à ce paragraphe.