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Chapter 2

Short introduction to algebraic
group actions

The geometric invariant theory, developped by Mumford in [MFK], is studying the action
of algebraic groups on algebraic varieties. Its main goal is to construct and to describe
quotient varieties in a sense weaker than an orbit space.

When the group G, acting on the variety X, is reductive (it means G is affine and all
its representations are semi-simple) the algebra of invariants of X is finitely generated
(Nagata’s theorem). Thanks to this result we can define the quotient of X (in fact of an
open set of X) by G. We will give a characterization of these quotient morphisms, and a
useful criterion (Hilbert-Mumford criterion) which will give us a practical way to describe
the orbits.

After this short and not exhaustive introduction we will give many applications in chapter
3 and in the rest of this book.

2.1 Algebraic groups and their actions

A closed subgroup G of GL(n,C) is called a linear group. It is a smooth algebraic variety,
moreover the multiplication map G ×G → G and the inverse map G → G are algebraic,
that is G is a algebraic group. A homomorphism

f : G→ GL(N,C)

is called an N -dimensional linear representation of G. Obviously, a linear group is affine.

2.1 Theorem. [Bor], Prop. I.10 Every affine algebraic group is isomorphic to a linear
group.

Let G an algebraic group and X an algebraic variety (we always omit ’over the field C’)

2.2 Definition. An algebraic action of G on X is a morphism of algebraic varieties

σ : G×X → X

satisfying the following properties σ(g, (σ(h, x)) = σ(gh, x) and σ(e, x) = x.
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For an action σ of G on X we will denote σ(g, x) = g.x. The orbit of x ∈ X is the set

G.x = {g.x | g ∈ G}

and the stabilizer of x is
Gx := {g ∈ G | g.x = x}

We denote X/G the orbit space and π : X → X/G the quotient.

When G acts on two varieties X and Y a map f : X → Y is G-equivariant if

f(g.x) = g.f(x)

for all g ∈ G and all x ∈ X. In particular f is invariant if f(g.x) = f(x) i.e. if f is
constant on the orbits. Any invariant map factorizes by the quotient map X → X/G.

In general the quotient map is not as nice as expected. For example consider the action
of C∗ on C2 by multiplication

t.(x, y) = (tx, ty)

The orbits are the origin and the vector subspaces of dimension one (lines) without the
origin. Then the closure of every orbit contains the origin. Thus there is no structure of
separated topological space on X/G for which the quotient map is continuous. But the
quotient (X \ {0})/G exists, it is the projective line.

2.3 Proposition. [Bor]I.8 Let G an algebraic group acting on an algebraic variety X.
(i) Every orbit of G in X is open in its closure
(ii) The closure of every orbit contains the orbit and others orbits of smaller dimension;
it contains at least one closed orbit.
(iii) for any x, dim(G.x) = dim(G)− dim(Gx)
(iv) For any n ≥ 0, the set {x ∈ X | dim(G.x) ≤ n} is closed in X.

Let X be an algebraic variety and A = O(X) the algebra of morphisms X → C. An action
σ of G on X induces an action of G on A given by

σ(g, f)(x) = g.f(x) = f(g−1.x) for f ∈ A g ∈ G and x ∈ X

We denote also this action by f 7→ g∗(f).

Example. (binary forms) For any integer d let Vd be the vector space of homogeneous
polynomials of degree d in the variables x, y. Then G = SL(2) acts on points written as
column vectors by left multiplication and acts on Vd(

a b
c d

)
.f(x, y) = f(dx− by,−cx+ ay)

Of course every f ∈ Vd can be written f(x, y) =
∏d
i=1(bix − aiy). If f is not zero the

points (ai, bi) of the projective line determine f . Note that the points g.(ai, bi) determine
g.f . The stabilizer Gf acts on the roots by permutation. If the roots of f are distincts
and if d ≥ 3 then Gf is finite and dim(G.f) = dim(SL(2)) = 3.

For f ∈ Vd we define the discriminant of f by the formula

∆(f) =
∏

1≤i<j≤d
(aibj − ajbi)2
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The map ∆ : Vd → C is a polynomial map G-invariant. If ∆(f) = 0 then f has a multiple
(at least double) root.

If f ∈ Vd has only simple roots and if d ≥ 2 the orbit G.f is closed in Vd. In fact we have

G.f ⊂ {φ ∈ Vd | ∆(φ) = ∆(f)}

This last set is closed in Vd and it contains only orbit of maximal dimension (remind that
the stabilizer of a polynomial with simple roots is finite, this argument works for d ≥ 3
but the reader can supply a easier argument in the case d = 2). We conclude with the
proposition 2.3 (ii).

2.2 Quotients

All the proofs of the result of this section can be found in [LP0].
We begin by the notion of categorical quotient which is the weakest. Then we will define
the good quotient and the geometric quotient which is the natural notion of orbit space.

2.4 Definition. A categorical quotient of X by the action of G is a pair (Y, π) given by
an algebraic variety Y and a morphism π : X → Y which satisfy the following properties
(i) the morphism π is G-invariant.
(ii) the pair (Y, π) is universal for (i). That means that for any G-invariant morphism
f : X → Z there exist an unique morphism φ : Y → Z such that f = φ ◦ π

Example. Let Mn be the vector space of n× n matrices with coefficients in C. The linear
group GL(n,C) acts on Mn by conjugation. Consider the morphism

π : Mn → Cn

which associates to a matrix M the n-coefficients of its characteristic polynomial. Then
the couple (Cn, π) is a categorical quotient of Mn.

2.1 Exercise. Prove this claim. When n = 2 describe the orbits and the fibers. Do they
coincide?

2.5 Definition. A good quotient of X by the action of G is a pair (Y, π) of an algebraic
variety Y and a G-invariant morphism π which satisfy the following conditions
(i) the morphism π is affine and surjective.
(ii) the canonical morphism of sheaves OY → π∗(OX)G is an isomorphism.
(iii) The image by π of a G-invariant subset is a closed subset of Y .
(iv) The morphism π separates the G-invariant disjoint closed subsets of X.

2.6 Proposition. Let π : X → Y be a good quotient of X by G. Then we have the
following properties
(i) The topology of Y is the quotient topology.
(ii) The pair (Y, π) is a categorical quotient.
(iii) In each fiber of π there is one and only one closed orbit.

The third assertion implies that the underlying set of Y can be identified with the set of
closed orbits.
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2.7 Definition. Let X be an algebraic variety with an action of G. A good quotient

π : X → Y

is called a geometric quotient if the orbits are closed.

Example. Let U ⊂ Mn be the open subset of matrices whith distinct eigenvalues. Then
there exist a geometric quotient of U by GL(n,C) (conjugation). This quotient is the
open set of Cn of points (c1, · · · , cn) such that the discriminant of the polynomial

tn +
∑
i≥1

cit
n−i

is different from zero. It is easy to verify that the orbits are closed. We will see next that
it is a good quotient.

Let σ be an action of G on X. For x ∈ X we denote by σx : G→ X the map which sends
G onto G.x. If this map is proper, the orbit of x is closed in X.

2.8 Proposition. Let π : X → Y be a good quotient of X by the action σ of G. Let
U ⊂ X be the set of points such that the morphism σx is proper. Then
(i) the set U is open in X
(ii) this open set is the inverse image by π of an open set V ⊂ Y , and the induced morphism
U → V is a geometric quotient.

2.9 Proposition. The map σx is proper iff the two following conditions are filled
(i) the orbit of x is closed in X
(ii) the stabilizer Gx of x is finite.

2.2.1 Quotient of an affine variety

2.10 Theorem. Let G be a linear reductive group acting on an affine algebraic variety
X = SpecA. Then the algebra AG is finitely generated. Moreover the morphism

π : X = SpecA→ Y = SpecAG

induced by the inclusion AG ⊂ A is a good quotient.

Example. Consider the action of GL(n,C) on Mn by conjugation. By Theorem 2.10 there
exists a good quotient. This good quotient is a categorical quotient, and by uniqueness
property, this good quotient is the quotient

Mn → Cn

described before.

2.2.2 Quotient of a projective variety

Let φ : B → A be a morphism of graded finitely generated algebras such that the graded
piece of degree 0 is C. Then the inverse image of the vertex O of the cone Spec(B) by
the induced morphism Spec(A)→ Spec(B) is a closed C∗-invariant subvariety of Spec(A),
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corresponding to a closed subvariety of Proj(A), called the center of φ, and denoted by
C(φ). This subvariety is associated to the ideal of A generated by φ(B+). Thus we obtain
a morphism of algebraic varieties

Proj(A) \ C(φ)→ Proj(B)

Let G be a reductive group which acts linearly on Cn+1. Let X be a G-invariant subvariety,
defined by a homogeneous ideal I. Consider the algebra A of homogeneous polynomials
on Cn+1, and the quotient R = A/I. This is a graded algebra such that R0 = C. The
variety X can be identified to Proj(R). Consider the inclusion

i : RG ↪→ R

2.11 Definition. A point of X is unstable for the action of G if it belongs to the center
of i.

Let Xss = X \ C(i). We remark that x ∈ Xss if and only if there is an G-invariant
homogeneous polynomial P ∈ R of degree ≥ 1 such that P (x) 6= 0.

2.12 Theorem. The canonical morphism π : Xss → Proj(RG) is a good quotient.

2.13 Definition. A point x ∈ X is called semi-stable for the action of G if there is an
G-invariant homogeneous polynomial P ∈ R of degree ≥ 1 such that P (x) 6= 0.

We denote by Xss the set of semi-stable points of X. We denote by X̂ = SpecR the affine
cone of X and we denote by x̂ a representative of x ∈ X. So the above definition means
that

x ∈ Xss ⇔ O /∈ G.x̂

This leads to the following definition

2.14 Definition. A point x ∈ X is semi-stable if and only if O /∈ G.x̂. It is stable if G.x̂
is closed and if Gx̂ is finite.

As before we denote by σ the action of G on X.

2.15 Proposition. Let G an affine algebraic group which acts on X. Then the orbit
morphism

σx : G→ X

is proper if and only if x is a stable point.

By the proposition 2.8 we know that the set of stable points Xs is open. It is the inverse
image of an open set Y s and the map Xs → Y s is a geometric quotient.

2.2.3 The Hilbert-Mumford criterion.

To compute the semi-stable (stable) points of a linear action of a group G on a variety X
we have a very useful numerical criterion, called the Hilbert-Mumford criterion.

2.16 Definition. A group morphism Gm = C∗ → G is called an one parameter subgroup
of G.
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2.17 Proposition. Let V a G-module. Then v ∈ V is semi-stable (resp.stable) under the
action of G if and only if v ∈ V is semi-stable (resp. stable) under the induced action of
every one parameter subgroup.

Let λ : C∗ → G a one parameter subgroup of G and V be a n-dimensional representation
of G. Then in convenient coordinates we have

λ(t) =

 tr1 0
. . .

0 trn

 with r1 ≥ · · · ≥ rn

Let µ(λ, v) = maxi|vi 6=0{−ri}. Assume now that G acts linearly on Pn and let X ⊂ Pn
be a closed G-invariant subvariety. We can show that µ(λ, x) = µ(λ, x̂) for every non zero
representative of x. Then we observe that
• µ(λ, x) > 0⇔ Limt→0λ(t).x̂ does not exist.
• µ(λ, x) ≥ 0⇔ Limt→0λ(t).x̂ 6= 0 if the limit exists.
Hence a consequence of Proposition 2.17 is

2.18 Theorem. (Hilbert-Mumford criterion) Assume that G acts linearly on Pn and
let X ⊂ Pn a closed G-invariant subvariety. A point x ∈ X is semi-stable (resp. stable) if
and only if µ(λ, x) ≥ 0 (resp. µ(λ, x) > 0) for every one parameter subgroup λ.
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Chapter 3

Applications: binary forms,
hypersurfaces

3.1 Binary forms

3.1.1 Generalities and binary forms of degree ≤ 3

Let U be a vector space of dimension 2. P(U) is a projective line P1. We have a natural
isomorphism SnP1 ' Pn which now we recall. The symmetric group Sn acts on the
ring C[x0, . . . , xn] by permuting the variables. A symmetric polynomial in the n variables
x1, . . . xn is a polynomial which is invariant for this action.
Let

∏n
j=1(1 + xit) =

∑n
j=0Ejt

j so that E0 = 1, E1 =
∑n

j=1 xj , . . ., En =
∏n
j=1 xj . The

Ej are called the elementary symmetric polynomials.
Consider the variety SnP1 of effective divisors of degree n in P1.
To such a divisor

D =
∑

nxx, where
∑

nx = n and x ∈ P1

we can associate a homogeneous polynomial P ∈ SnU , unique modulo invertible scalars,
vanishing in x with multiplicity nx. This shows that SnP1 ' P(SnU) ' Pn. Consider the
group SL(U) and its natural action on SnU :

g.P (x) = P (g−1.x)

Then by Theorem 2.12 we have a good quotient of the open set of semi-stable points :

π : (Pn)ss → Y

3.1 Proposition. A divisor D =
∑
nxx gives a semi-stable (resp. stable) point in Pn for

the action of SL(U) if and only if for any x ∈ P1 we have nx ≤ n
2 , (resp. nx <

n
2 )

Proof. Let λ : C∗ → SL(U) a one parameter subgroup of SL(U). We have

λ(t) =

(
ta 0
0 tb

)
11



with a + b = 0. We can assume that a < b. A basis of SnU∨ is given by the monomials
XiT j with i+ j = n so we have P =

∑
i=0,··· ,n aiX

iTn−i. Then the action of λ on SnU∨

is the following

λ(t).P =
∑

i=0,··· ,n
ait
−ai−b(n−i)XiTn−i

We have

µ(λ, P ) = Max{ia+ b(n− i), ai 6= 0} = Max{a(2i− n), ai 6= 0}

but a < 0 so µ(λ, P ) = (−a)(n − 2Min{i, ai 6= 0}). By the Hilbert-Mumford criterion
2.18 we know that P is unstable if and only if there exists such a one parameter subgroup
with µ(λ, P ) < 0. This is equivalent to ai = 0 for i ≤ n

2 . That means that the point
(0, 1) is a root with multiplicity ≥ n

2 of the polynomial P . Conversely if P has one root
of multiplicity ≥ n

2 we can assume that this root is (0, 1). Then by choosing a = −1 and
b = 1 we prove that P is unstable (i.e. the point D is unstable). The method is exactly
the same to find the semi-stable points.

By this way we found the semi-stable points but we did not describe the quotient nor the
morphism π : (Pn)ss → Y . In the following cases we will do it.

• For n = 1 (one point on P1) all points are unstable. There exists a categorical quotient
(which is a point). The action is transitive and there is no SL(U)-invariant open subset
with a good quotient.

• For n = 2, (two points on P1) the open set of semi-stable points is the open set of divisors
D = x+ y with x 6= y. This open set (P2)ss is the complementary of a conic in the plane.
Of course we can identify the conic with the discriminant of

P = a0X
2 + 2a1XT + a2T

2

The polynomial a2
1−a0a2 is SL(U)-invariant. The good quotient is just one point because

there is only one orbit (i.e. SL(U) is 2-transitive). We can also remark that the algebra
of invariants is C[S2U∨]SL(U) = C[a2

1 − a0a2].

• For n = 3 the semi-stable points correspond to the homogeneous polynomials with three
distincts roots. If ∆ = 0 is the equation of the discriminant of the generic binary cubic
a0X

3 + a1X
2T + a2XT

2 + a3T
3 we have (P3)ss = P3 \ {∆ = 0}, where the set of points

satisfying ∆ = 0 is a quartic surface in P3. There is a nice interpretation of this surface
: it is the surface given by the tangent of the normal rational cubic image of P1 by the
Veronese imbedding. The semi-stable points coincide with the stable points. Since SL(U)
acts transitively on the set of triplets in P1, the quotient is, once again, a point. We can
also describe the algebra of the invariants C[S3U∨]SL(U) = C[∆].

For n = 4, the situation becomes more complicated (then more funny). Before to consider
this case we prefer to recall some facts about the cross ratio.
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3.1.2 Cross Ratio

Let z1, z2, z3 and z4 be four distinct points in P1. Let σ ∈ PGL(2,C) be the homography
such that σ.(z1, z2, z3) = (0,∞, 1). The remaining point will be sent to the point λ = σ.z4

where λ is the cross-ratio

λ(z1, z2, z3, z4) =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

Remark that λ(∞, 0, 1, z) = z. By its construction the cross ratio is SL(2)-invariant on
the ordered 4-uples of points. Permuting the four points has the effect of changing the
cross-ratio from λ to either 1− λ, 1

λ ,
1

1−λ ,
λ−1
λ or λ

λ−1 . A quick way to see that is through
the Plücker relation

(z1 − z2)(z3 − z4)− (z1 − z3)(z2 − z4) + (z1 − z4)(z2 − z3) = 0

Thus, two (not ordered) 4-uples can be carried into each other if and only if the subsets

{λ, 1− λ, 1

λ
,

1

1− λ
,
λ− 1

λ
,

λ

λ− 1
} ⊂ C \ {0, 1} (3.1)

coincide. To characterize when this is the case, we introduce the celebrated j-function

j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
(3.2)

3.1 Exercise. Show that two subsets {∞, 0, 1, λ} and {∞, 0, 1, λ′} are SL(2)-equivalent
if and only if j(λ) = j(λ

′
).

It follows from the previous exercise that we have one orbit (in P(S4U)) for each value of
j ∈ C.

3.1.3 Binary forms of degree ≥ 4

For n = 4, the stable points correspond by Proposition 3.1 to homogeneous polynomials of
degree 4 without multiple root, i.e. outside the threefold in P4 defined by the discriminant.
There are exactly two orbits of strictly semi-stable points :

• D1 = (X2T 2) i.e. 2 double zeroes.

• D2 = X2(X + T )(X − T ) i.e. 1 double zero.

We can see (exercise 3.4) that the first one is of dimension 2 (2 points on P1), the second
one is of dimension 3 (3 points on P1) and that the first orbit is closed and contained in
the closure of the second orbit. Geometrically D2 is the union of osculating 2-planes to the
quartic rational curve, D1 is the union of intersection points of two osculating 2-planes.

Let U be the open set in P1 × P1 × P1 × P1 of 4-uples of distincts points. We have just
seen that U/S4 = (P4)s. Consider the map

U → P1 \ {∞, 0, 1}
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which associates to (x, y, z, t) the cross-ratio [x, y, z, t]. It gives an action of S4 on P1 \
{∞, 0, 1}. The orbit of λ according to this action was described in (3.1). The normal
subgroup Z2 × Z2 of S4 acts trivially on P1 \ {∞, 0, 1} and we obtain an action of the
finite group isomorphic to S3 generated by the automorphism z 7→ 1

z and z 7→ 1 − z.
This action has a geometric quotient, given by the map j : P1 \ {∞, 0, 1} → C (see
(3.2)). This invariant is the usual invariant for elliptic curves (Hasse’s invariant). This is
a geometric quotient by the action of SL(2) (fibres and orbits coincide), and the action
of S4 commutes with the action of SL(2). We obtain a SL(2)-invariant morphism from
(P4)s to C by composition of the cross ratio with j, which can be extended in a map
π : (P4)ss → P1 by sending the strictly semi-stable orbit on ∞. We deduce that the
morphism (P4)ss/SL(2)→ P1 is birational and it is a isomorphism.

3.2 Exercise. (i) Show that the closure in P4 of the orbit π−1(z) is a threefold of degree
6 except π−1(1728) (z = j(−1)) which is a threefold of degree 3 (harmonic) and π−1(0)
(z = j(w), w root of w2 − w + 1) which is a threefold of degree 2 (anarmonic).
(ii) By considering the threefold of lines bisecant to the rational quartic give the equation
of the Zariski closure of π−1(1728).

Hint : det

 X0 X1 X2

X1 X2 X3

X2 X3 X4

 = 0 is the wanted equation.

3.2 Remark. The algebraic counterpart of the exercise 3.2 is that f = a0x
4 + 4a1x

3y +
6a2x

2y2 + 4a3xy
3 + a4y

4 is the sum of two 4-powers if and only if

J := det

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣ = 0

3.3 Exercise. (i) Given generic t1, t2 ∈ C, the equation (x− t1)(x− t2) = λ1(x− t1)2 +
λ2(x− t2)2 has no solution in the unknowns λi, because for x = ti you get λi = 0.
(ii) Given any t1, t2, t3 ∈ C prove that the equation (x− t1)(x− t2)(x− t3) = λ1(x− t1)3 +
λ2(x− t2)3 + λ3(x− t3)3 has a solution in the unknowns λi.

The correct generalization of the exercise 3.3 is the exercise 3.5 (iii).

Let U be a complex vector space of dimension 2 and consider the projective space P(SnU)
of hyperplanes in SnU . The rational normal curve Cn is described by < u⊗n >, where
u ∈ U∗.
SnU is the space of homogeneous polynomials of degree n and Cn corresponds to the
polynomials with a single root of multiplicity n.
In the projective space P(SnU) it is customary to identify the class [f ] of a polynomial
with the polynomial itself.

3.3 Definition. Given a smooth point x of a curve C, by the implicit function theorem
there is a C∞-map f : U → Pn from an open set U ⊂ C containing the origin parametrizing
locally the curve. Let us assume that f(0) = x, the k-th osculating space at x is the span of
the points f(0), f (1)(0), . . ., f (k)(0) and it is defined when these points are independent. A
point where the k-th osculating space is not defined for some k < n is called inflectionary
point. Any curve not contained in a hyperplane has only finitely many inflectionary points.
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3.4 Proposition. The i-th osculating space at the point < u⊗n > corresponds to the
polynomials which are divisible by < u⊗n−i > and we denote it by T iun. In particular T 1

p

is the tangent line at p and Tn−1
p is the osculating hyperplane at p.

Proof. By the group action it is enough to compute the spaces in a neighborhood of xn

which correspond to t = 0 in the parametrization (1, t, t2, . . . , tn). Then the space where
the first i derivatives vanish at zero consists of points with the last n−i coordinates vanish.
These points correspond to polynomials which are multiple of xn−i.

We underline that in this correspondence, every polynomial f in the line < g, h > joining
the polynomials g and h is a multiple of GCD(g, h).

3.4 Exercise. In P4 for every pair of points x4 and y4 in the rational normal curve C,
show that the corresponding osculating planes meet in the point x2y2. Prove that the locus
filled by this point is a orbit S. Prove that its closure is S∪C, and it is a smooth surface of
degree 4, which is isomorphic to the projective plane, and it is called the Veronese surface
in P4. In fact it is the projection of the Veronese surface in P5 through a point. A theorem
of Severi in 1901 (written at the age of 22) shows that it is the unique surface in P5 which
projects from a point to a smooth surface in P4.

3.5 Remark. Zak has classified all varieties of dimension 2
3(n − 1) in Pn that are not

linearly normal, that is that are projection from a external point of a variety in a higher
dimensional projective space. There are 4 such examples, and the Veronese surface of
the previous exercise is the first one. For details see [LVdV]. Zak proof has been recently
simplified by Chaput. There is a fascinating link of these 4 varieties with the 4 real division
algebras R, C, H, O [Chap].

3.5 Exercise. A generic hyperplane H ⊂ P(SnU) meets the rational normal curve C in
n distinct points x1, . . . , xn. We get a function H 7→ ∩ni=1T

n−1
xi C.

(i) Prove that this function extends to a morphism P(SnU)∗ → P(SnU) in the following
way, if H ∩ C is

∑m
i=1 nixi then H goes to ∩mi=1T

n−i
xi C.

(ii) For n = 1 the corresponding map U → U∗ is given by the contraction by ∧2U∗. For
general n the linear map SnU → SnU∗ is the n-symmetric power of this one.
(iii) Prove that the morphism P(SnU)∗ → P(SnU) of part (i) is a linear projective
transformation which is symmetric if n is even and skew-symmetric if n is odd. In
particular ∩ni=1TxiC ∈< x1, . . . , xn > if n is odd, while in the case n even the locus
{H ∈ P(SnU)∗|H ⊃ Tn−1

p C ∀p ∈ H ∩ C} is a smooth quadric. Formally when H ∩ C
contains points with multiplicities i, one has to take the corresponding osculating space of
order n− i.
(iv) Prove that the inverse function P(SnU)→ P(SnU)∗ comes from the function

f 7→ H = {span of roots of f counted with their multiplicity}

The previous exercise has the following interpretation in terms of representations: ∧2(SnU)
contains a summand of rank 1 iff n is odd, S2(SnU) contains a summand of rank 1 iff
n is even . In particular every rational normal curve of even degree determines a unique
smooth quadric containing it.
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3.6 Exercise. Castelnuovo, 1891 From the Veronese surface S in P4 (see 3.4 it is
possible to reconstruct the rational normal quartic C. In fact ∀x ∈ S, the trisecants to S
passing through x lie in a plane πx, called singular plane. Then C can be obtained in one
of the two following ways
i) C = {x ∈ S| dimπx ∩ TxS ≥ 1} (in general πx ∩ TxS = {x})
ii) πx meets S in x and in a conic Cx. Then C = {x ∈ S|x ∈ Cx}.

The Hessian of a polynomial f(x, y) ∈ Sn(U) is by definition

H(x, y) = fxxfyy − f2
xy ∈ S2n−4U

3.7 Exercise. (i) Prove that H(x, y) = 0 gives a system of quadrics which defines as
scheme the rational normal curve C. For n ≤ 3 these quadrics generate the homogeneous
ideal of quadrics containing C, but for n ≥ 4 they are too few.
(ii) Prove that the quadrics given by the 2× 2 minors of the matrix[

a0 a1 · · · an−1

a1 a2 · · · an

]
generate the homogeneous ideal of C.

3.6 Lemma. The hypersurface R(a0, a1, . . . , an) = 0 given by the discriminant of f(x, y) =∑n
i=0 ai

(
n
i

)
xiyn−i corresponds to the union of Tn−2

un ' Pn−2.

Proof. Every Tn−2 contains polynomials with a double root. Conversely if f has a double
root it lies in a Tn−2.

This lemma has the following generalization

3.8 Exercise. Prove that the equations of the varieties ∪u∈UTn−iun give necessary and
sufficient in order that f ∈ SnU has a root of multiplicity i. Compute explicitly the
variety of polynomial of fourth degree with a double root.

3.9 Exercise. Enriques-Fano Consider the closure of the orbit of f ∈ P(SnU) under
the action of SL(U), call it Xf . Prove that
i) Xf is never a point.
ii) Xf is a curve iff it is the rational normal curve (of degree n) and f(x, y) = xn (in a
suitable system of coordinates).
iii) Xf is a surface iff f(x, y) = xiyn−i for some 0 < i < n (in a suitable system of
coordinates). The degree of Xf is 2i(n − i) if 2i 6= n and i2 if 2i = n. This case is the
only one where Xf is smooth (projection of the quadratic Veronese embedding)

iv) In the case not covered by ii) and iii) Xf is a threefold of degree n(n−1)(n−2)
|Γf | where

Γf = {g ∈ PGL(2)|g · f = f}. When n = 4 and the 4 roots of f are distinct then Γf
is Z2 ⊕ Z2 with the only two exceptions of the harmonic case (f = x4 + y4) where Γf is
dihedral of order 8, which is the simmetry group of a square, and of the anarmonic case
(f = x4 + xy3) described in the next remark.
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3.7 Remark. The item iv) of the previous exercise has been analyzed by [Aluffi-Faber].
They prove that the threefold Xf is smooth only in the four following cases
i) n = 3 Xf = P3 f = x3 + y3 (Fano of index 4) and Γf is the dihedral group of order
6 corresponding to the isometries of a regular triangle.
ii) n = 4 Xf = Q3(smooth quadric in P4 f = x(x3 + y3) (anarmonic) (Fano of index
3) and Γf is the tetrahedral group of order 12 isomorphic to A4. Remark that we have a
central extension

1→ Z2 → A4
f−→S3 → 1

(in fact the centrum of A4 is given by Z2 × Z2) where f acts by permutation of the three
medians which join the medium points of the opposite edges of the tetrahedron. A4 can be
seen as binary dihedral corresponding to the regular triangle.
iii) n = 6 Xf = Gr(P1,P4) ∩ P6 f = xy(x4 − y4) (Fano of index 2) and Γf is the
octahedral group of order 24 isomorphic to S4)
iv) n = 12 Xf has deg 22 in P12 f = xy(x10 + 11x5y5 − xy10) (Fano of index 1 found
by Mori, the genus is 12 and Γf = A5=icosahedral group of order 60)
The example iv) escaped classical list of Fano threefolds. One of its more intriguing proper-
ties is that its Hilbert scheme of lines is not reduced. Examples i)-iv) give compactifications
of C3, see also [Mukai].

***pictures? Say more about finite subgroups of SL(2) and regular polyhedra.

3.8 Remark. By pullback with the 2 : 1 covering SL(2)−→PGL(2) we get the so called
binary polyhedral groups.

3.2 Hypersurfaces, ternary forms

3.10 Exercise. Consider the action of SL(V ) (change of variables) on the space P(S2V )
of quadrics in P(V ). Find a natural invariant and give its equation. Give the number
of orbits and show that only one orbit is closed. By studying the stabilizer of semi-stable
point show that there is no stable point for n ≥ 3.

We consider now a vector space V of dimension 3 over C and we consider the action of
SL(V ) on the space of cubic forms S3V ∨ = C[x, y, z]3, by change of coordinates. Let
f ∈ S3V ∨ be a cubic curve in P2 = P(V ). Let λ a one parameter subgroup of SL(V ). We
can write it

λ(t) =

 ta 0 0
0 tb 0
0 0 tc


where a, b, c are integers such that a + b + c = 0 and a ≥ b ≥ c. We deduce that the
vector space of cubic forms f such that Limt→0λ(t).f = 0 is contained in the vector
space generated by x3, x2y, xy2, y3, x2z (these two vector spaces are equal when (a, b, c) =
(2, 1,−3)). Then every unstable f can be written with convenient coordinates in the
following form :

f(x, y, z) = ax3 + bx2y + cxy2 + dy3 + ex2z

So we can understand what is a unstable plane curve of degree 3. By computing the
partial derivatives we see that (0, 0, 1) is a singular point, but not an ordinary singular
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point. More precisely a cubic curve is unstable if it has a triple point or a cusp. This
happens in the following three cases. **pictures

• If de 6= 0 then the curve is a cuspidal curve (the cusp is the point (0, 0, 1))

• If d = 0 and ce 6= 0 then the curve is the union of the conic ax2 + bxy + cy2 + exz = 0
and its tangent x = 0.

• If c = d = 0 or if e = 0 then the curve is the union of three lines with a common point.

This proves that the cubic curves which are smooth (i.e. outside the discriminant locus) or
with an ordinary singular point (nodal curves) are semi-stable. We have a good quotient

P(S3V ∨)ss → P(S3V ∨)ss/SL(V )

Since the dimension of P(S3V ∨)ss is 9 the quotient is a normal unirational curve so it
is P1. Remember that each fiber contains a closed orbit. When the cubic is smooth its
stabilizer is finite, so its orbit is 8 dimensional and moreover the orbit is closed because if
not you could find in the closure a smaller one. **this is false!**

When the cubic is nodal we have three cases :

• irreducible nodal curve, xyz + y3 + x3 = 0
• union of an irreducible conic and a line cutting the conic in two distincts points, xyz +
y3 = 0
• three non concurrent lines, xyz = 0

The cases 2 and 3 correspond to strictly semi-stable curves because the dimension of their
stabilizer is ≥ 1, for example the one parameter subgroup λ(t) = (t, 1, t−1) stabilizes the
two curves. We can also see that the orbit of xyz = 0 is of dimension 6 and it is contained
in the closure of the orbit (dimension 7) of xyz + εy3 = 0. This latter is also contained
in the closure of the orbit xyz + εy3 + ζx3. These three orbits are in the same fiber, the
closed orbit is the smallest one. Since there is only one closed semi-stable but not stable
orbit, namely the set of three non concurrent lines, we obtain

P(S3V ∨)s/SL(V ) ' A1

3.11 Exercise. Describe the unstable orbits, compute their dimension.

3.12 Exercise. Clebsch quartics, 1865 S4V is a direct summand of S2(S2V ). In
coordinates this means that any f ∈ S4V can be written as

f(x, y, z) = W t · Cf ·W (3.3)

where W = (x2, 2xy, 2xz, y2, 2yz, z2) and Cf is a (symmetric) 6× 6 matrix.
(i) show that there are infinitely many symmetric matrices C̃f such that (3.3) holds
(ii) show that among the symmetric matrices C̃f such that (3.3) holds there is a unique
one Cf characterized by the property C(px+qy+rz)4 = V ·V t where V = (p2, pq, pr, q2, qr, r2).
Prove that the rank of Cf is SL(V )-invariant.
(iii) write explicitly the first entries of Cf in terms of the coefficients of f .
(iv) prove that rkCf = 1 if and only f is the fourth power of a linear polynomial.
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(v) prove that detCf = 0 if and only if f is the sum of five fourth powers. This shows that
the 5-secant variety of the quartic Veronese embedding of P2 is a hypersurface of degree
6 in P(S4V ) = P14. Remark that the freshman (and wrong!) numerical postulation gives
that every f is the sum of five fourth powers. In fact 4 + 5 · 2 = 14. Alexander and
Hirschowitz [AH] classified all the few special cases analogous to this one(see [IK]).
(vi) prove that xz(xz + y2) is not the sum of five 4-powers.

3.13 Exercise. (Dolgachev) Prove that any non-singular hypersurface of degree d in Pn
is a semi-stable point for the linear action of SL(n + 1) on Pn. If d ≥ n + 1, prove that
any non singular hypersurface of degree d is a stable point under the action of SL(n+ 1)
(because the group of automorphism is finite in this case).

3.3 Action of PGL(U) = PGL(2) on P(S2(S2U))

***make pictures of the several cases, orbits and their relation**
Consider the following imbeddings

P(U)
v
↪→ P(S2U)

i
↪→ P(S2(S2U))

We denote by C2 the conic C2 = v(P(U)) and by C4 the quartic curve i(C2). The space
P(S2(S2U)) is the space of conic curves of P(S2U). The canonical decomposition

S2S2U = S4U ⊕ C

shows that there is a fixed point in this space which is the conic C2 and also an invariant
hyperplane P(S4U) which is generated by the quartic rational normal curve C4. This curve
is the curve of double lines tangent to C2. The invariant varieties D1 and D2 defined at
the beginning of the subsection 3.1.3. can be interpreted as the locus of intersection of
respectivly the bitangent and tangent conics to C2 with the hyperplane generated by C4

( Observe that the unstable points of P4 are the points of the rational curve (C4) and of
the surface of tangent lines to the rational quartic. We can see this curve and this surface
as the intersection of the hyperplane with the surface of surosculating conics and with the
threefold of osculating conics.)

Now since a general conic C meets C2 in four distinct points, the orbit PGL(U).C is linked
to the cross-ratio of these four points. In the space of conics there is a natural invariant
which is the set of degenerated conics. As we have seen before this is a cubic hypersurface,
since in the pencil (C,C2) there is exactly three degenerated conics. We would like to
study the action of PGL(U) on this invariant hypersurface.

3.3.1 Action of PGL(2) on the degenerated conics

Let C a degenerated conic meeting C2 in four distinct points. Two fourtuples of points on
C2 have same cross-ratio λ, 1

λ , 1− λ, 1
1−λ , λ

λ−1 and λ−1
λ if and only if they are equivalent

under SL2(C). Then we deduce that two degenerated conics associated to the cross ratio
{λ, 1

λ} with λ ∈ C−{0, 1} live in the same SL2(C)-orbit (Indeed if we have [z1, z2, z3, z4] = λ

then [z2, z1, z3, z4] = 1
λ). Let Cλ a representative of this orbit. The function c(λ) = (λ+1

λ−1)2

19



is invariant by the transformation λ 7→ 1
λ . We associate, by this way, the complex number

c(λ) 6= 1 to the conic Cλ. We denote by Ωc(λ) the SL2(C)-orbit of Cλ.

The complex number u = 0 if and only if the cross-ratio of the four points on C2 is −1.
In that case the two lines of C are armonically conjugated i.e. C belongs to the pencil
of conics (double line) (l2, d2) where l and d are tangent to C2. This remark proves that
Ω̄0 = Sec(i(C2)).
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Chapter 4

Poncelet porism

4.1 Fregier’s involution and Pascal theorem

Let D ⊂ P2 be a smooth conic and x be a point in P2 such that x /∈ D. A general
line passing through x meets D in two distinct points. The homography u ∈ Aut(D) =
PGL(2,C) which permute these two points is an involution called Fregier’s involution.
The point x is called the center of the involution, and the two tangents to D coming from
x give the fixed points of u.

4.1 Exercise. Show that every involution on D is a Fregier’s involution.

4.1 Proposition. Let u and v be two involutions with distincts fixed points. Then,
(uv) is involutive if and only if the two fixed ponts of u and the two fixed ponts of v form
an armonic 4-ple on D.

Proof. Let (x1, x2) be the fixed points of u and (y1, y2) be the fixed points of v.

Assume that uv is involutive. Since uv = vu we can see that v (resp. u) exchanges the
fixed points of u (resp. of v). The cross ratio does not change by an homography (3.1.2)
then we have [x1, x2, y1, y2] = [u(x1), u(x2), u(y1), u(y2)]. By the remark above it means
that [x1, x2, y1, y2] = [x1, x2, y2, y1], and this equality implies that [x1, x2, y1, y2] = −1.

Conversely, since [x1, x2, y1, y2] = −1 we have the following relations

[x1, x2, y1, y2] = [x1, x2, y2, y1] = [x2, x1, y1, y2]

This means that v (resp. u) exchanges the fixed points of u (resp. of v) because an
involution is defined by its fixed points. Now we have uv(x1) = x2, uv(x2) = x1, uv(y1) =
y2, uv(y2) = y1 and these four points are all fixed points for (uv)2. Since an homography
with three fixed points is the identity, the proposition is proved. 2

4.2 Proposition. Let u, v, and w be three involutions with distincts fixed points, xu, xv
and xw be their respective centers. Then, (uvw)2 = idD ⇔ xu, xv and xw are aligned.

Proof. Assume that the three centers are aligned and let’s call L this line. The line L is
not tangent to D because the three involutions do not have a common fixed point. Then
let {x, y} = L ∩ D. We verify that uvw(x) = y and uvw(x) = y. Let z ∈ D be a fixed
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point of uvw. Now the three points x, y and z are fixed points for uvw. It means that
(uvw)2 = idD.

Conversely, assume that uvw is involutive. Let x ∈ D such that v(x) = w(x). Then x is
a fixed point of the two homographies vw and wv. Of course v(x) is also a fixed point for
vw because vw(v(x)) = vw(w(x)) = v(x). We have found two fixed points for vw. We
want now to prove that u(x) is also a fixed point to vw. Assume for a while that u(x) 6= x.
By hypothesis we have (uvw)(uvw)(x) = x. Since vw(x) = x we find uvwu(x) = x, then
u2vwu(x) = u(x) or vw(u(x)) = u(x). Since u(x) 6= x and vw 6= idD this proves that
u(x) = v(x) = w(x) i.e. that xu, xv and xw are aligned.

It remains to verify that u(x) 6= x. An involution is defined by its two fixed points, hence
uvw and u cannot have the same fixed points. So if u(x) = x, we have u(v(x)) = z with
z 6= v(x). But uvw(w(x)) = uv(x) = z and wvu(w(x)) = wv(z) 6= z which contradicts
uvw = wvu. 2

4.3 Corollary. (Pascal’s theorem) Let p1, p2, p3, q3, q2, q1 be six (ordered) points on a
smooth conic D. Let xij , i < j the point of intersection of the two lines joining pi to qj
and pj to qi. Then the three points x12, x13 and x23 are aligned.

Proof. We denote by, u the involution defined by x12, v the one defined by x23 and w the
last one defined by x13. Then by following lines you verify that

(uvw)(p1) = q1, (uvw)(q1) = p1.

Let z a fixed point of uvw. Then z, p1, q1 are fixed points of (uvw)2. Since an element of
PGL(2,C) which posses more than three fixed point is the identity, we have proved that
(uvw)2 = idD. The result now follows from Proposition 4.2. 2

4.2 Poncelet porism

4.4 Definition. 1) A true n-gone is the union of n-distinct lines. A true n-gone has
(
n
2

)
vertices.
2) A true n-gone is circumscribed to a smooth conic D if all its lines are tangent to D.
3) A true n-gone is inscribed into a conic C (even a singular one) if at least n of its
vertices belong to C.
4) A conic C (even singular) is n-circumscribed to a smooth conic D if there exist a true
n-gone circumscribed to D and inscribed in C.
5) A conic C (even singular) is strictly n-circumscribed to a smooth conic D if C is
n-circumscribed to D and C is not m-circumscribed to D with m < n.

When the two conics C and D are smooth then we will sometimes write that C is n-
inscribed into D when the dual conic C∗ is n-circumscribed to the dual conic D∗. We will
say that a homography f ∈ AutD is of order n if and only if fn = idD and fn−1 6= idD.

4.2.1 Smooth case

We will begin this section by a short review of old results which is an average of the papers
[BB], [BKOR], [GH1].
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Let C and D two smooth conics such that C meets D in four distinct points and C is
n-circumscribed to D. Poncelet has showed the following theorem (called ’grand théorème
de Poncelet’)

4.5 Theorem. If C is n-circumscribed to D then any general point of C is a vertex of a
true n-gone inscribed in C and circumscribed to D.

Proof. (from Griffiths and Harris’s proof) Consider the incidence curve E ⊂ C × D∗,
where E = {(x, l), x ∈ l}. This curve is a smooth elliptic curve .

4.2 Exercise. Prove it.

Then one can define two involutions on E. Indeed let (x, l) ∈ C×D∗. The line l cuts C in
an other point x

′
. Let l

′
be the second tangent to D from x. Then we have the following

involutions :
E

i1−→ E, (x, l) 7→ (x
′
, l)

E
i2−→ E, (x, l) 7→ (x, l

′
)

Let o be the origin of E for the group law +. Then there exists a ∈ E and b ∈ E such
that i1(z) = −z + a and i2(z) = −z + b. It follows that the product i2i1 is a translation
on E, more precisely i2i1(z) = z + (b− a). Then the polygone closes after n steps if and
only if n.(b − a) = o. It means that C is n-circumscribed to D if and only if (b − a) is
a n-torsion point on E. This does not depend on the choice of the beginning vertex, but
only on the conics C and D. 2

Remark. If we begin the construction from a vertex x by drawing the second tangent to
D then (b − a) becomes (a − b) which does not change its nature (it is still a n torsion
point).

Cayley showed that the set of n-circumscribed conics to D is an hypersurface in P5 =
P(H0(OP2(2))). This is well explained in a modern way by Griffiths and Harris. We will
denote this hypersurface by Cn. Of course Cn is not irreducible in general. In the set of
n-circumscribed conics you will find the r-circumscribed conics with r ≥ 3 and r | n (draw
an example for the case n = 6, r = 3). Thus this justifies to introduce an other notation
Mn for strictly n-circumscribed conics to D.

We explain now briefly how to compute the degrees of these hypersurfaces, following the
article of Barth and Bauer.
We denote by T (n) the number of n-primitive torsion points of E. Barth and Bauer

show that the the line (in the conic projective space) Cλ,µ contains T (n)
4 conics strictly

n-circumscribed to D ([BB], prop **). The point p is determined by one conic in the
pencil generated by C and D. The same conic gives the point −p. Then in the pencil we
find T (n)

2 conics inscribed in C (remind that C is fixed and the ramification conic moves in
the pencil). To find the number the degree of n-circumscribed conics we have to dualize.
Since the Gauss map for conics P5−− → P5∗ is a quadratic map (defined by the 2-minors
of the generic symmetric 3 × 3-matrix) the image of the line is a conic which meets the

hypersurface Mn along T (n)
2 smooth points. It follows that degMn = T (n)

4 .

It results immediatly from their proof that Mn is reduced and that the degree of Cn is the
sum of the degrees of the hypersurfaces Mr for 3 ≤ r < n and r | n. Since the number
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of n-torsion points on E is n2, the degree of Cn is n2−4
4 when n is even (we remove the

2-torsion points), n2−1
4 when n is odd (we remove the origine).

Remark. If Γ ∈Mn∩Mm for m 6= n then Γ is a degenerated conic. This is an immediate
consequence of the theorem 4.5. It follows that Cn =

⋃
r≥3,r|nMr is reduced.

The cases of tangency, in other words, when the conic is tangent, bitangent, an osculating
or an surosculating to D, are studied (for smooth conics) in [BKOR] 7.14 page 329-331.
The authors show that a smooth conic C tangent or bitangent to D can be n-circumscribed
to D but that it is never the case if C osculates or surosculates D. We give now two
different proofs for the cases of simple tangency and bitangency. In the part concerned
with jumping conics (see Section 8.7, prop. 8.19 ) we will prove, by an original argument,
that a smooth osculating (and also surosculating) to D is never n-circumscribed to D.

• When C is tangent to D, i.e. the intersection consists of three distinct points, the
curve E is a rational cubic curve with a ordinary double point denoted by (x0, l0). The
involutions i1 and i2 extend to the non-singular model Ẽ. The fixed points of ĩ1 and
of ĩ2 are distinct points. The fixed points of t̃ are the preimages of (x0, l0). We have
Aut(Ẽ)=Aut(P1)=SL2(C). Since SL2(C) acts transitively on the set of three points of
P1 we may assume that (1, 0), (0, 1) are the two fixed point of ĩ1 and that (1, 1) is a fixed
point of ĩ2. Then we get

M (̃i1) =

(
i 0
0 −i

)
, M (̃i2) =

(
z εi− z

z + εi −z

)
where ε = 1,−1 and z ∈ C. The other fixed point of ĩ2 is (εi− z, εi+ z). Then the matrix

of t̃ is M(t̃) =

(
zi zi+ ε

zi− ε zi

)
. Since the eigenvalues of this matrix are (z+

√
z2 + 1)i

and (z −
√
z2 + 1)i, the homography t̃ is of order n when z verifies

(z +
√
z2 + 1)n = (z −

√
z2 + 1)n

or in other words when u = z+
√
z2+1

z−
√
z2+1

is n-root of unity.

4.3 Exercise. By studying the incidence curve E, like above, try to prove that a smooth
osculating or surosculating conic to D is never n-circumscribed to D.

• Let C be a smooth bitangent conic to D. Without lost of generality we can assume that
the points C ∩D are cyclic points. In the real plane C and D are concentric circles. We
can choose the equations such that C and D are given respectively by :

X2 + Y 2 = R2 and X2 + Y 2 = 1

where R is a real number greater than 1. Then C is n-circumscribed to D if the angulus
between the two intersection points with C of a tangent line to D is 2kπ

n with k = 1, · · ·n−1

i.e. if R =
√

1
1−sin2(kπ/n)

.
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4.2.2 Singular case****verify the commentaries, add picture!!and add a
general grand thm de poncelet, including the singular case.

We explained above which smooth conics are n-circumscribed to a fixed one called D.
Now we want to describe the locus of singular conics n-circumscribed to D. We will do it
when they are 4 distinct points of intersection with D. Moreover we will consider only the
case of singular conics 2n-circumscribed to D. In fact, intuitively it is clear that a singular
conic which intersects D in 4 points cannot be 2n+1-circumscribed (because the two lines
should play the same role) and it is also clear by drawing a picture that if the singular
conic meets D in three points then there is a convergent proccess which show that any
singular tangent conic is n-circumscribed for all n > 2. We will give a precise meaning
and also a proof of these facts in Section 8.7 with the help of vector bundle techniques.

4.6 Proposition. Let u and v two involutions on a smooth conic D, xu and xv the
respective centers. Then the followings are equivalent
1) the product uv is of order n.
2) the singular conic x∗u ∪ x∗v is strictly 2n-circumscribed to D∗

Proof. If uv is of order n then the result is clear. Indeed let x ∈ D, then the points v(x),
uv(x), vuv(x), · · · , v(uv)n−1(x) and uvn(x) = x are the vertices of an inscribed 2n-gone
into D. The dual 2n-gone (its lines are the tangent lines to D∗ which correspond to the
above vertices) is circumscribed to D∗ and all its vertices belong to x∗u ∪ x∗v.
On the other hand, the existence of a 2n-gone circumscribed to D∗ implies the existence
of a 2n-gone inscribed into D. Let x one of its vertices. By following its sides we have
(uv)n(x) = x. Since 2n ≥ 3 we deduce that the product uv is of order n.

We have seen in Proposition 4.6 that a degenerated conic, say l ∪ d, where l and d are
lines such that l /∈ C∗2 and d /∈ C∗2 , is 2n-circumscribed to C2 if and only if the product
uv, of the homomorphism u and v with center l∗ and d∗ in C∗2 , is of order n. Since
clearly these conditions are preserved by any element of SL(2,C) we would like to find the
complex numbers which characterize the correspondings orbits Ωη. This is the object of
the following proposition. We denote by Pm the m-primitive roots of unity.

4.7 Proposition. Let l and d two lines of P2 with l∗, d∗ /∈ C∗2 , u (resp. v) the Frégier’s
involution on C∗2 defined by the point l∗ (resp d∗). The following conditions are equivalent
(n ≥ 2) :
i) C = l ∪ d is 2n-circumscribed to C2.
ii) the product uv is of order n
iii) l ∪ d ∈

⋃
z∈P2n

Ω
( 1+z2

2z
)2

**** ie it depends only on the data of l, d and C2 so it is the Poncelet Thm for singular con-
ics **** Proof. We have already proved the first equivalence i)⇔ ii) in Proposition 4.6.
We will prove now ii)⇔ iii).

First of all we need to prove that l ∪ d meets C2 in four distinct points. Otherwise u and
v defined by the points l∗ and d∗ have a common fixed point since we have l ∩ d ∈ C2.
Moreover this common fixed point is the unique fixed point of uv. Then uv is a translation,
i.e. could not be of order n. It follows that there exist η ∈ C such that l∪ d ∈ Ωη. Let z a

complex number such that η = (1+z2

2z )2. After the identification C∗2 ' P1, we can assume
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that l ∩ C2 = {(1, i), (1,−i)} and (1, iz) ∈ d ∩ C2. Since the invariant associated to l ∪ d
(see 3.3.1) is c(λ) = (1+z2

2z )2 the cross-ratio of the four points (l ∪ d)∩C2 is λ = (1−z
1+z )2 or

λ = (1+z
1−z )2. Then the second fixed point of v is (1,−iz). Thus the involutions are

u =

(
0 −1
1 0

)
et v =

(
0 −1

z
z 0

)
We see that the product uv is of order n if and only if z ∈ P2n. 2
Remark If |z| = 1 then (1−z

1+z )2 ∈ R, hence the four points in the complex plane lie in a
circle. ***picture jean-francoise***
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Chapter 5

Some remarks about bundles on Pn

5.1 The theorem of Segre-Grothendieck

We refer to [OSS] and to the appendix 10.2 for the definition of vector bundle and spanned
vector bundle.

5.1 Example. On Pn = P(V ) with homogeneous coordinates (x0, . . . , xn) we have the
line bundles O(t) that on the standard covering given by Ui = {x|xi 6= 0} have transition
functions gij = (

xj
xi

)t. Then for t ≥ 0 O(−t) = O(−1)⊗t and O(t) = (O(−1)∗)⊗t. All the
line bundles on Pn are isomorphic to O(t) for some integer t.

If F is a coherent sheaf, it is usual to denote F ⊗ O(t) by F (t). For t ≥ 0 the space
H0(Pn,O(t)) consists of all homogeneous polynomials in (x0, . . . , xn) of degree t, or in
equivalent way H0(Pn,O(t)) ' StV . All the intermediate cohomology of O(t) is zero,
that is

H i(Pn,O(t)) = 0 for 0 < i < n ∀t ∈ Z

The zero loci of sections of O(t) are exactly the hypersurfaces of degree t. The zero loci
of a general section of O(n1)⊕ . . .⊕O(nk) is called a complete intersection.
It is important to underline that Hom(O(a),O(b)) ' Sb−aV that is sheaf morphisms
O(a) → O(b) are given in coordinates by homogeneous polynomials of degree b − a.
In general a morphism ⊕O(ai) → ⊕O(bj) is represented by a matrix whose entries are
homogeneous polynomials. As a particular case, note that any isomorphism O(a)k →
O(a)k is represented by a invertible k × k matrix of constants.
On P(V ) there is the natural action of SL(V ). SL(V ) is the universal covering of the
automorphism group of P(V ) which is PGL(V ). If E is a bundle over P(V ), for any
g ∈ SL(V ) we can consider the bundle g∗E.

5.2 Definition. The group of symmetry of a bundle E in P(V ) is its stabilizer for the
SL(V )-action and it is denoted by Sym(E). In formula

Sym(E) := {g ∈ SL(V )|g∗E ' E}

5.3 Definition. A bundle E is called homogeneous if Sym(E) = SL(V ). It can be shown
that it is equivalent to the existence of a action of SL(V ) over E which lifts the natural
action on P(V ).
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5.4 Theorem. Segre-Grothendieck Let E be a bundle on P1. Then E splits as the
direct sum E = ⊕O(ai) for some integers ai

Proof. The proof is by induction on the rank of E. Up to tensor E with a line bundle,
we can assume that H0(E) 6= 0, H0(E(−1)) = 0. Then any nonzero s ∈ H0(E) does not
vanish anywhere. In fact if s(x) = 0 for some x ∈ P1, pick t ∈ H0(P1,O(1)) such that
t(x) = 0, then s/t is a nonzero section of E(−1). It follows that we have an exact sequence

0−→O−→E−→F−→0 (5.1)

where F is a bundle which splits by the inductive hypothesis. Let F = ⊕O(ki). The
assumption H0(E(−1)) = 0 and the vanishing H1(O(−1)) = 0 imply that ki ≤ 0 ∀i. At
this point the standard proof by Grauert and Remmert tells us that Ext1(F,O) = H1(F ∗)
vanishes and then the sequence splits. Due to the importance of this theorem, we offer
the alternative argument of Grothendieck, which is near to the original Segre construction
(although Grothendieck was not aware of it!) and does not use the property of Ext1 of
classifying extensions (although essentially it reproves it in this special case). For more
historical informations, see [GO].
Apply Hom(−,O) (i.e. dualize) to the sequence (5.1)

0−→Hom(F,O) = F ∗
f−→Hom(E,O) = E∗

g−→Hom(O,O) = O−→0 (5.2)

The cohomology sequence associated to (5.2) is

H0(E∗)
H0(g)−→C−→H1(F ∗) = 0

where for any s ∈ H0(E∗) we have H0(g)(s) = g · s. Since H0(g) is surjective, there exists
s such that g · s is the identity, this implies that (5.2) splits so that E = O ⊕ F as we
wanted.

5.1 Exercise. Prove that the decomposition of the previous theorem is unique.

5.2 Exercise. Let X be a variety such that Pic(X) = Z. Let E be a bundle(or a torsion
free sheaf) of rank r on X. Let k0 = min{k|h0(E(k)) 6= 0}. Prove that any nonzero
s ∈ H0(E(k0)) vanishes in codimension at least two and at most r (it is possible that the
zero locus is empty).

5.5 Corollary. Every bundle on P1 is homogeneous, i.e. it is SL(2)-invariant.

The above theorem is an essential tool to study vector bundles on higher dimensional
projective spaces. If E is a bundle on Pn and L is a line then E|L splits as ⊕O(ai(L))
with well determined integers ai(L). When L changes the integers ai(L) can change. By
semicontinuity properties it is easy to check (see [OSS]) that for generic L the integers
ai(L) are more balanced than for special L. The lines such that their splitting is not
the generic one are called jumping lines (see chapter 8 on Barth morphism). When the
integers ai(L) are the same for any line L we say that E is uniform. In particular every
homogeneous bundle is uniform. The converse is not true (see exercise 5.6).
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5.6 Example. In the next chapter of this book Schwarzenberger bundles are defined. They
appear on Pn in sequences

0−→Ok−→Ok+n(1)−→E−→0

The Schwarzenberger bundle E on P2 defined from the exact sequence

0−→O2−→O4(1)−→E−→0

splits as O(1)⊕O(3) on lines in a conic C ⊂ P2∗ and as O(2)⊕O(2) on lines in P2∗ \C

5.2 The Euler sequence and the tangent bundle

Let Pn = P(V ) be the projective space of one dimensional vector subspaces of the (n+ 1)-
dimensional vector space V ∗. Consider the incidence variety W = {(v, x) ∈ V ∗×Pn|v ∈ x}
We have a fibration W → Pn whose fibers are isomorphic to C. Hence W is a line bundle
on Pn.

5.3 Exercise. Prove that W is isomorphic to O(−1).

Hint compute the transition functions.

We get an exact sequence

0−→O(−1)−→O ⊗ V ∗−→Q−→0

where Q is called the quotient bundle and has rank n.
The main basic result of the theory is the following

5.7 Theorem. Q(1) ' TPn

Proof. GL(V ∗) acts on Pn. Let x ∈ Pn. We have the natural map GL(V ∗) → Pn given
by g 7→ gx. The derivative computed in the origin is the surjective linear map End(V )→
TxPn. Its kernel is {g ∈ End(V )|g(v) ⊂< v >} Hence

TxPn ' End(V )/{g|g(v) ⊂< v >} ' Hom(< v >, V/ < v >)

so that TPn ' Hom(O(−1), Q) ' Q(1).

5.4 Exercise. Prove the isomorphism needed in the proof, that is if v is a nonzero vector
in V , the natural map End(V ) → Hom(< v >, V/ < v >) is surjective with kernel equal
to {g|g(v) ⊂< v >}

Tensoring by O(1) we get the Euler sequence

0−→O−→O(1)⊗ V−→TPn−→0 (5.3)

It follows from the Euler sequence that H0TPn ' sl(V ). sl(V ) can be interpreted as the
space of (n+1)-matrices of trace zero. Every A ∈ sl(V ) induces A|<v> : < v >→ V/ < v >
so that the section vanishes in < v > if and only if v is a eigenvector of A. Since the generic
matrix has (n+ 1) distinct eigenvectors we get
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5.8 Theorem. The generic section of TPn vanishes in n+ 1 points.

5.9 Corollary.
TP1 = O(2)

5.10 Theorem. The tangent bundle on Pn splits on any line as O(1)n−1 ⊕O(2).

First proof Let l be a line. By Theorem 5.4 TPn|l ' ⊕
n
i=1O(ai) with

∑n
i=1 ai = c1(TPn) =

n + 1. By the Euler sequence we see that TPn(−1) is globally generated, hence ai ≥ 1,
which concludes the proof.

Second proof Let Pn−1 = H be a hyperplane in Pn. Then QPn |Pn−1 = QPn−1 ⊕ O. Then
apply Corollary 5.9.

5.5 Exercise. Let f : P2 → P5 be the Veronese embedding. Prove that f∗TP5 is homoge-
neous.

5.6 Exercise. * Let f : P2 → P4 be obtained as a smooth projection of the Veronese
embedding. Prove that f∗TP4 is uniform but not homogeneous.
Hint: restrict f∗TP4 to conics

5.11 Remark. For a vector space V of dimension n we denote detV := ∧nV . We recall
that any linear map Φ ∈ Hom(V,W ) between vector spaces of the same dimension induces
the map detΦ ∈ Hom(detV, detW ). If A and B are vector spaces of dimension a and b
respectively, then there are canonical isomorphisms:

det(A⊗B) ' (detA)⊗b ⊗ (detB)⊗a det(SkA) ' (detA)⊗(a+k−1
a )

∧kA ' ∧a−kA∗ ⊗ (detA)

The above isomorphisms hold also if A and B are replaced by vector bundles over a variety
X.

5.7 Exercise. We denote Ωp = ∧pΩ1. Prove that there is the following exact sequence

0→ Ωp(p)→ ∧pV ∗ ⊗O → Ωp−1(p)→ 0

Deduce that H0(Ωp(p+ 1)) = ∧pV ∗ Hint: see the appendix 10.3.

The basic exact sequence on the grassmannian
We consider the grassmannian G = Gr(Ck+1, V ∗) = Gr(Pk,P(V ∗)), see the appendix.
Consider the incidence variety W = {(v, x) ∈ V ∗×G|v ∈ x}. We have a fibration W → G
whose fibers are isomorphic to Ck+1. Hence W is a vector bundle on G of rank k+1 which
is called the universal bundle. We get the exact sequence

0−→U−→O ⊗ V ∗−→Q−→0

where the quotient bundle Q has rank n − k. Repeating word by word the arguments of
Theorem 5.7 we get

5.12 Theorem. TG ' Hom(U,Q) ' U∗ ⊗Q
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Again we have H0(G) = sl(V ). The section corresponding to the matrix A ∈ sl(V )
vanishes on the linear spaces Ck+1 which are invariant by A. If A is generic with n + 1
distinct eigenspaces, the Ck+1 invariant are exactly those which are spanned by k + 1
among these eigenspaces. We have proved the following

5.13 Theorem. The generic section of TGr(Ck+1, V ∗) vanishes at
(
n+1
k+1

)
points

Let E be a bundle of rank r onX. P(E)
p−→X is the projective bundle with fiber isomorphic

to Pr−1 (see [Ha] II.7). There are a canonical line bundle called OP(E)(1) which restricts
to every fiber as O(1) and a relative Euler sequence

0−→O−→O(1)⊗ p∗E∗−→Trel−→0

It can be proved that H∗(P(E),Z) is generated by h = OP(E)(1) and by p∗H∗(X,Z) with
the only relation

hr − p∗c1(E)hr−1 + p ∗ c2(E)hr−2 + . . . (−1)rcr(E) = 0

It is possible to take this relation (the decomposition of hr ) as the definition of Chern
classes of E, ci(E) ∈ H i(X,Z). The Chern classes are well defined even in the Chow ring
A(X) = ⊕Ai(X). The above relation is called Wu-Chern equation .
The Wu-Chern equation can be reformulated as cr (p∗E∗ ⊗O(1)) = 0 which follows from
the Whitney formula (5.5) that we will see in a while.
When E is spanned, also the line bundle OP(E)(1) is spanned and this gives as usual a
map P(E)

φ−→P(H0(E)) where the fibers in P(E) are mapped by φ to linear spaces. When
OP(E)(1) is very ample then P(E) is classically called a scroll.
Remark that when E → F is a surjective map between bundles then it is induced an
imbedding P(F )→ P(E) which takes fibers to fibers.

5.8 Exercise. The flag manifold F (0, 1, 2) ⊂ P2×P2∗ consists of pairs (p, l) where p ∈ P2

is a point, l ∈ P2∗ is a line and p ∈ l. Prove that it is a hyperplane section of PP 2 × P2∗

and it is isomorphic to the projective bundle P(TP2).

5.3 Geometrical definition of Chern classes

There are several equivalent definitions of the Chern classes of a vector bundle E. The
analytic definitions via the curvature is the more useful to prove formulas about the Chern
classes. In the spirit of this book we sketch the geometrical definition of Chern classes of
degeneracy loci that involves the map ΦE in the grassmannian.
Let E be a spanned vector bundle of rank r over X. We denote by s1, . . . , sr−p+1 r−p+ 1
generic sections of E. The subvariety

{x ∈ X|s1(x), . . . , sr−p+1(x) are lin. dep.} (5.4)

has codimension p and its homology class in H2n−2p(X,Z) does not depend on the sections
(it is easy to check that even the rational equivalence class in the Chow ring is well defined).

5.14 Definition. The Chern classes cp(E) ∈ H2p(X,Z) of a spanned vector bundle E are
defined as the Poincaré dual of the class in (5.4).
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If p = r in (5.4) we get the zero locus of a generic section of E.
If p = 1 in (5.4) we get that c1(E) = c1(det E), furthermore c1 of a line bundle associated
to a divisor D is the class of D itself.

5.9 Exercise. Prove that c1(E) = c1(∧rE)

5.10 Exercise. Prove that if E has rank 2 then E ' E∗ ⊗ c1(E). Hint: use the exercise
10.7.

When E is not spanned there are two ways to supply the definition of Chern classes. The
first one (as in [GH]) is to consider convenient C∞ sections, in fact the Chern classes are
C∞-invariant. The second one is to tensor E with some ample line bundle L in order to
get E ⊗ L spanned and then use the formula

ck(E ⊗ L) =
k∑
i=0

(
r − i
k − i

)
ci(E)c1(L)k−i

(of course one has to check that this definition is well posed!)
In particular we will use often c1(E ⊗ L) = c1(E) + rc1(L)
The Chern polynomial is the formal expression

cE(t) := c0(E) + c1(E)t+ c2(E)t2 + . . .

In the case X = Pn we have ci(E) ∈ Z and cE(t) ∈ Z[t]/tn+1. If

0→ E → F → G→ 0

is an exact sequence of vector bundles, the Whitney formula is

cE(t)cG(t) = cF (t) (5.5)

In particular
c1(F ) = c1(E) + c1(G)

c2(F ) = c2(E) + c1(E)c1(G) + c2(G)

5.11 Exercise. An instanton bundle on P3 is defined as E = Kerb/Ima where

Ø(−1)k
a−→Ok+2 b−→O(1)k

satisfies b surjective, a injective and b · a = 0 (such a complex is called a monad). Prove
that

c(E) =
1

(1− t2)k

**An example where ccodimZ(OZ) = degZ even if Z is in a Segre product***.
We recall from [GH] the following basic

5.15 Theorem. Gauss-Bonnet For any compact complex variety of dimension n

χ(X,Z) = cn(TX)
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5.16 Corollary.
χ(Pn) = n+ 1

χ(Gr(Ck+1, V ∗)) =

(
n+ 1

k + 1

)
Proof. Apply the theorems 5.8 and 5.13.

The Thom-Porteous formula allows to compute the homology class (and even the class
in the Chow ring) of the degeneracy locus of a map between two vector bundles. This is
defined as follows. Let E

φ−→F be a sheaf map between vector bundles of rank e and f .
The k-degeneracy locus is Dk(φ) := {x ∈ X|rk(φx) ≤ k}. We have

codimDk(φ) ≤ (e− k)(f − k) (5.6)

and codimDk(φ) ≤ (e − k)(f − k) in the generic case. Assume that codimDk(φ) =
(e− k)(f − k), then the Thom-Porteous formula is

[Dk(φ)] = det (cf−k+j−i(F − E)1≤i,j≤e−k) (5.7)

where ci(E−F ) is the i-th coefficient in the expansion of the quotient cE/cF and we pose
ci = 0 if i < 0.

5.3.1 The splitting principle

For practical computations of Chern classes it is useful the so called splitting princi-
ple. It says that for a given bundle E over X there exists a variety Y and a morphism
p : Y → X such that p∗E has a filtration whose quotients are line bundles Li and moreover
p∗ : H∗(X,Z) → H∗(Y,Z) is injective. Hence p∗(c(E)) = c(p∗(E)) =

∏
i(1 + c1(Li)). By

the injectivity of p∗ one can factor formally in a convenient ring extension of H∗(X,Z) as
c(E) =

∏
(1 + xi(E)) and compute with xi(E) as if they were the first Chern classes of

line bundles Li.
We describe this procedure with an example. Let E be a bundle of rank two. We want
to compute the Chern classes of the symmetric power S3(E) by means of ci(E). Split
formally c1(E) = a+ b, c2(E) = ab. Then

c1(S3E) = 3a+ (2a+ b) + (a+ 2b) + 3b = 6(a+ b)

c2(S3E) = 3a(2a+b)+3a(a+2b)+9ab+(2a+b)(a+2b)+(2a+b)(3b)+(a+2b)(3b) = 11(a+b)2+10ab

c3(S3E) = 3a(2a+b)(a+2b)+3a(2a+b)(3b)+3a(a+2b)(3b)+(2a+b)(a+2b)(3b) = 6(a+b)3+30(a+b)ab

c4(S3E) = 3a(2a+ b)(a+ 2b)(3b) = 18(a+ b)2(ab) + 9(ab)2

The formulas obtained
c1(S3E) = 6c1(E)

c2(S3E) = 11c2
1(E) + 10c2(E)

c3(S3E) = 6c3
1(E) + 30c1(E)c2(E)

c4(S3E) = 18c2
1(E)c2(E) + 9c2

2(E)

are valid for any bundle of rank two E by the splitting principle.
These computations extend in a straightforward way to coherent sheaves, because any
coherent sheaf has a locally free resolution.
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5.12 Exercise. Compute ci(S
2E) for a bundle E of rank 2 or 3 by means of ci(E).

**c1(SkE) =
∑k

i=0(k − i)
(
r+i−2
i

)
c1(E)

**quote Lascoux

5.13 Exercise. Compute the Chern polynomial of a bundle E on Pn with the resolution

0−→Os−→O(1)t−→E−→0
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Chapter 6

Steiner Bundles on Pn

6.1 Incidence varieties, duality and vector bundles.

Let X ⊂ PN a projective variety, we denote by X∨, and called it the dual variety, the
closure in (PN )∨ of the set of hyperplanes in PN containing one (in a smooth point) tangent
space of X. More precisely,if TxX is the (projective) tangent space of X in a smooth point
x, and Xsm the open subset of smooth points in X, we have

X∨ := {H ∈ P∨ | ∃x ∈ Xsm, TxX ⊂ H}

When X is the product of two varieties, X = X1×X2 the tangent space in a point (x1, x2)
is the projective space generated by (Tx1X1)× {x2} and {x1} × (Tx2X2).

6.1.1 Generalities

We begin with the classical incidence variety point-hyperplane in PN

F q−−−−→ PN∨

p

y
PN

Let X be a non degenerated smooth subvariety of PN , and PW ⊂ PN∨ a linear subvariety
in the dual space. We denote by X ⊂ F the following variety p−1X ∩ q−1PW . We have
the restricted diagram

X
q−−−−→ PW

p

y
X

The resolution of X as a subscheme of X × PW is

0 −−−−→ OX×PW (−1,−1) −−−−→ OX×PW −−−−→ OX −−−−→ 0

In fact X is an hyperplane section of X × PW in P(V ⊗W ) where P(V ) = PN . So we
identify X with a linear form in P(V ⊗W ). The fiber over a point of PW is the hyperplane
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section of X by the corresponding hyperplane. So when X is not linear the variety X is
never a projective vector bundle over PW . The fiber over x ∈ X is an hyperplane section
of PW by the hyperplane x∨. Then we have

6.1 Theorem. The following conditions are equivalent :
i) X is a projective bundle over X
ii) X ∩ (PW )∨ = ∅
iii) dim (PW ) ≥ dim (X) and X /∈ (X × PW )∨

Proof. X is a projective bundle over X if and only if for all x ∈ X the fibers are projective
spaces of the same dimension (by Proposition 10.9). Since p−1(x) ' x∨ ∩ PW it means
that for all x ∈ X the projective space x∨ ∩ PW is an hyperplane of PW and not all the
ambient space. In other words there is no x ∈ X such that PW ⊂ x∨ or equivalently
x ∈ (PW )∨. This proves i)⇔ ii).

We assume that X ∩ (PW )∨ = ∅ then it is clear that dim (PW ) ≥ dim (X). We denote by
Φ the linear map V ⊗W → C or the map V → W ∗ corresponding to X. The hypothesis
means that for all x ∈ X the linear form Φ(x) : W → C is not everywhere zero. This
proves that the hyperplane Φ = 0 is not tangent to X × PW .

Conversely, if there exists x ∈ X ∩ (PW )∨ and dim (PW ) ≥ dim (X) then we have to
find z ∈ PW such that the kernel of the linear form Φ(z) : V → C contains P(TxX).
Let r = dimX and (x0, · · · , xr) a basis of TxX. Since Φ(

∑
λixi) = Φ(x) = 0 the vector

subspace
⋂i=r
i=0 kerΦ(xi) ⊂W contains a non zero vector z. 2

We assume now that dimX ≤ dimPW and that X = P(S) is a projective bundle over X,
then we have :

0 −−−−→ OX(−1)
Φ−−−−→ W ⊗OX −−−−→ S −−−−→ 0

We have seen in the previous theorem that a general Φ gives a vector bundle on X, which
is equivalent to say that for all x ∈ X, Φ(x) 6= 0. General, here, means outside the closed
set (X × PW )∨. In the following proposition we give the codimension of this set and also
its degree, according to the degree of X.

6.2 Proposition. Let r = dimX and dimPW = r + k, k ≥ 0, then
(i) codim(X × PW )∨ = k + 1
(ii) deg(X × PW )∨ = deg(X × Pk+1)

Proof. Let (Φ0, · · · ,Φk+1) be k+ 2 general linear forms on V ⊗W . We consider the map :

W ⊗OPk+1×X

∑
XiΦi−−−−−→ OPk+1×X(1, 1)

Since the codimension of P(W )∨ is exactly r + k + 1, it meets the variety Pk+1 × X
along a finite scheme of lenght equal to the degree of Pk+1 ×X. Let (a0, · · · , ak+1;x) an
intersection point. The linear form

∑
aiΦi vanishes identically on the point x ∈ X, so by

the previous theorem it is tangent to X × PW . 2
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6.1.2 Application to Segre varieties : Steiner bundles

Before applying the previous construction to the Segre varieties we define a particular case
of vector bundles on projective spaces, called Steiner bundles.

The Steiner bundle, say S, on Pn are one of the simplest case of vector bundles in the
sense that they are defined by a short exact sequence like the following :

0→ Om+1
Pn (−1) −→ Om+k

Pn −→ S → 0

By (5.6), to have a bundle it is necessary that k ≥ n + 1. Then the rank of a Steiner
bundle on Pn is always greater than n. Then we will replace m + k by m + n + 1 + k so
that k ≥ 0.

Example : The tangent bundle over Pn is a Steiner bundle.

Let n,m, k be three integers such that k ≥ 0 and 1 ≤ n ≤ m. We assume that k ≥ 0 in
order to obtain a vector bundle on the Segre variety (see 6.1 iii)) Pn×Pm ↪→ P(n+1)(m+1)−1.
The incidence diagram is

X
q−−−−→ Pn+m+k

p

y
Pn × Pm

The variety X ⊂ Pn × Pm × Pn+m+k is an hyperplane section of Pn × Pm × Pn+m+k by an
hyperplane of P(n+1)(m+1)(n+m+k)−1 defined by a trilinear form Φ =

∑
i,j,k ai,j,kXiYjZk.

We fix some notations. Let V, I,W three vector spaces such that PV = Pn,PI = Pm
and PW = Pn+m+k. The linear form Φ could be written Φ : V ∗ ⊗ I∗ ⊗ W ∗ → C or
Φ : V ∗ ⊗ I∗ →W . So we have the following exact sequences

0 −−−−→ OPV×PI×PW (−1,−1,−1)
Φ−−−−→ OPV×PI×PW −−−−→ X −−−−→ 0

0 −−−−→ OPV×PI(−1,−1)
Φ−−−−→ W ⊗OPV×PI −−−−→ S −−−−→ 0

0 −−−−→ I∗ ⊗OPV (−1)
Φ−−−−→ W ⊗OPV −−−−→ SV −−−−→ 0

0 −−−−→ V ∗ ⊗OPI(−1)
Φ−−−−→ W ⊗OPI −−−−→ SI −−−−→ 0

The different expressions of Φ are respectively

Φ =
∑
i,j,k

ai,j,kXiYjZk

Φ = (

n,m∑
i=0,j=0

ai,j,0Xi ⊗ Yj , · · · ,
n,m∑

i=0,j=0

ai,j,n+m+kXi ⊗ Yj)

Φ =


∑n

i=0 ai,0,0Xi · · ·
∑n

i=0 ai,0,n+m+kXi∑n
i=0 ai,1,0Xi · · ·

∑n
i=0 ai,1,n+m+kXi

· · · · · · · · ·∑n
i=0 ai,m,0Xi · · ·

∑n
i=0 ai,m,n+m+kXi
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Φ =


∑m

j=0 a0,j,0Yj · · ·
∑m

j=0 a0,j,n+m+kYj∑m
j=0 a1,j,0Yj · · ·

∑m
j=0 a1,j,n+m+kYj

· · · · · · · · ·∑m
j=0 an,j,0Yj · · ·

∑m
j=0 an,j,n+m+kYj


We write again the theorem 6.1 in this particular case

6.3 Theorem. Let V , I, W and Φ be given as before. The following conditions are
equivalent
1) For all non zero vectors x ∈ V ∗ and y ∈ I∗, Φ(x⊗ y) 6= 0.
2) (PW )∨ ∩ PV × PI = ∅
3) S is a vector bundle (of rank n+m+ k) over PV × PI.
4) SV is a Steiner bundle (of rank n+ k) over PV .
5) SI is a Steiner bundle (of rank m+ k) over PI.
6) Φ /∈ (PV × PI × PW )∨

Proof. The proof of this theorem is essentially the same than the one given to prove the
theorem 6.1. But according to the importance of Steiner bundles in this text we prefer to
repeat the proof. We choose here to write Φ : V ∗⊗ I∗ →W . Let x ∈ V ∗ and y ∈ I∗, then
Φ(x⊗ y) is a linear form on W , i.e

Φ(x⊗ y) : W ∗ → C, z 7→ Φ(x⊗ y)(z)

The sets Hx,y = {z ∈ W ∗,Φ(x ⊗ y)(z) = 0} are hyperplanes in W ∗ if Φ(x ⊗ y) 6= 0 and
are equal to W ∗ if Φ(x⊗ y) = 0. Then it is clear that 1), 2) and 3) are equivalent.

Let {y1, · · · , ym+1} be a basis of I∗ and {x1, · · · , xn+1} be a basis of V ∗. For a fixed
x ∈ V ∗ and a fixed y ∈ I∗ we define the sets

Hx = ∩m+1
i=1 Hx,yi , Hy = ∩n+1

j=1Hxj ,y

The expected dimension for Hx is n+k. If the dimension is n+k for all x ∈ V ∗ we obtain
a vector bundle of rank n + k over PV . Assume that dimCHx > n + k, then the m + 1
hyperplanes are not linearly independent, or at least one of them is not an hyperplane. In
both cases we have a non zero family of complex numbers such that

∑
aiΦ(x ⊗ yi) = 0,

then Φ(x⊗
∑
aiyi) = 0, which proves the equivalence between 3) and 4). The same holds

for 3) and 5).

By hypothesis Φ ∈ P(V ⊗ I ⊗W ). The point Φ belongs to (PV × PI × PW )∨ if and only
if the hyperplane Φ in P(V ∗ ⊗ I∗ ⊗W ∗) contains a tangent space in a point x0 ⊗ y0 ⊗ z0.
But the tangent space to a product is just the space generated by the tangent spaces
of each component of the product. In our case, it is the projective space generated by
{x0 ⊗ y0} × P(W ∗), {x0 ⊗ z0} × P(I∗) and {y0 ⊗ z0} × P(V ∗). In other words, Φ ∈
(PV × PI × PW )∨ if and only if it exists x0 ⊗ y0 ⊗ z0 ∈ V ∗ ⊗ I∗ ⊗W ∗ such that

∀y ∈ I∗, ∀x ∈ V ∗,∀z ∈W ∗,Φ(x0 ⊗ y)(z0) = Φ(x⊗ y0)(z0) = Φ(x0 ⊗ y0)(z) = 0

Now to prove the equivalence between 1) and 6) we just need to show that if Φ(x0⊗y0)(z) =
0 for all z ∈W ∗ then there exists z0 ∈W ∗ such that

∀y ∈ I, ∀x ∈ V,Φ(x0 ⊗ y)(z0) = Φ(x⊗ y0)(z0) = 0
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But we have already seen that Φ(x0 ⊗ y0) = 0 is equivalent to dimCHx0 > n + k and
dimCHy0 > m+k, then, since k ≥ 0, the intersection Hx0 ∩Hy0 contains a non zero vector
z0. 2

6.4 Proposition. Let k ≥ 0,
(i) codim(Pn × Pm × Pn+m+k)∨ = k + 1

(ii) deg(Pn × Pm × Pn+m+k)∨ = (n+m+k+1)!
(k+1)!n!m!

Proof. It is just a reformulation of the proposition 6.2. 2

This proposition can be generalized to more than three factors, as we will see in Theo-
rem 9.20.

When k = 0, the dual variety is an hypersurface and its equation is given by the hyperde-
terminant (see chapter 9).

The following theorem says that any morphism between Steiner bundles is induced by a
morphism between the corresponding short exact sequences.

6.5 Theorem. Let E, F be Steiner bundles on P(V ) appearing in the following sequences

0−→I ⊗O(−1)−→W ⊗O−→E−→0

0−→I ⊗O(−1)−→W ⊗O−→F−→0

where dimV = n+ 1, dim I = m+ 1, dimW = n+m+ k+ 1. For every f : E → F there
are a ∈ End(I), b ∈ End(W ) such that the following diagram commutes

0 −→ I ⊗O(−1) −→ W ⊗O p−→ E−→ 0ya yb yf
0 −→ I ⊗O(−1) −→ W ⊗O −→ F−→ 0

(6.1)

Proof. Applying Hom(W ⊗O,−) to the second row of (6.1) we have the exact sequence

Hom(W ⊗O,W ⊗O) = End(W )→ Hom(W ⊗O, F )→ Ext1(W, I ⊗O(−1))

The composition f · p ∈ Hom(W ⊗O, F ) lifts to End(W ) because

Ext1(W, I ⊗O(−1)) = W ∗ ⊗ I ⊗H1(O(−1)) = 0

Let b be a lifting, it makes commutative the right part of (6.1). Then the existence of a is
trivial.

6.1.3 Some SL(V ) invariant Steiner bundles

Let V a C vector space such that dimC V = r + 1 ≥ 2. We denote by Sk the vector space
SymkV , i.e. the k-symmetric power of V , and by vk the image of PV by the Veronese
map P(S1) ↪→ P(Sk). We consider now the canonical maps, the multiplication of forms
and the dual map δ which is the derivation,

Sn ⊗ Sm
×→ Sn+m, Sn+m

δ→ Sn ⊗ Sm
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Since these maps are SL(V )-equivariants we omit the dual sign for vector spaces. Also
we want to define an order on the basis of Sk. Let (x0, · · · , xr) a basis of V . Since a
form of Sk could be written

∏i=r
i=0 x

ki
i with

∑
ki = k, we choose the lexicographic order on

partitions i.e.

(k0, · · · , kr) ≤ (l0, · · · , lr)⇔ ∃s | li = ki for i ≤ s, and ki+1 ≤ li+1

We denote respectively byX(n0,··· ,nr), Y(m0,··· ,mr) and Z(s0,··· ,sr) (s like sum) the coordinates
on Sn, Sm and Sn+m.
Then in coordinates the multiplication map is given by the following trilinear form

Φ = [
∑

(sk)|
∑
sk=n+m

[
∑

(ni)|
∑
ni=n

[
∑

(mj)|
∑
mj=m,nk+mk=sk

X(n0,··· ,nr)Y(m0,··· ,mr)Z(s0,··· ,sr)]]]

If we denote by p(r, n,m, (s)) the number of couples of r + 1-partitions of n and m such
that their sum is equal to the r + 1-partition of n+m called (s) we have in a simple way

Φ =
∑

(sk)|
∑
sk=n+m

p(r, n,m, (s))X(n0,··· ,nr)Y(m0,··· ,mr)Z(s0,··· ,sr)

Remind the incidence diagramm

X
q−−−−→ P(Sn+m)

p

y
P(Sn)× P(Sm)

We remark that p(r, n,m, (0, · · · , n + m, · · · , 0)) = 1. This remark is sufficient to prove
that the sheaf X is a vector bundle over P(Sn)× P(Sm), indeed we have

6.6 Proposition. The multiplication map × induces a vector bundle on P(Sn)× P(Sm).

Proof. Let us call Φ this map. It is enough to prove that for all x ⊗ y ∈ P(Sn) × P(Sm),
Φ(x⊗ y) 6= 0. Let X0, · · · , Xr a basis of V . Since Φ−1(Xn+m

i ) = {Xn
i ⊗Xm

i }, we have

Xn+m
i (x⊗ y) = 0⇔ Xn

i (x) = Xm
i (y) = 0.

Let us introduce some notations. The multiplication map gives the following SL(V )-
bundles on P(Sn)× P(Sm),P(Sm) and on PSn,

0 −−−−→ OP(Sn)×P(Sm)(−1,−1) −−−−→ Sn+m ⊗OPSn −−−−→ En+m −−−−→ 0

0 −−−−→ Sn ⊗OPSm(−1) −−−−→ Sn+m ⊗OPSn −−−−→ Em,n+m −−−−→ 0

0 −−−−→ Sm ⊗OPSn(−1) −−−−→ Sn+m ⊗OPSn −−−−→ En,n+m −−−−→ 0

The projective Steiner bundle PEn,n+m over P(Sn) is imbedded in P(Sn) × P(Sn+m) and
it is defined by the sm equations

Φ = [
∑

(ni)|
∑
ni=n

X(n0,··· ,nr)Z(n0+m0,··· ,nr+mr)](mj)|
∑
mj=m = 0
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Over a general point (x(n0,··· ,nr))(ni) the projective fiber is Psn+m−sm−1 ⊂ Psn+m which is
defined by the sm equations

Φ = [
∑

(ni)|
∑
ni=n

x(n0,··· ,nr)Z(n0+m0,··· ,nr+mr)](mj)|
∑
mj=m = 0

6.7 Proposition. Over a point (xn0
0 · · ·xnrr )(ni) the fiber is the set of hyperplanes contain-

ing the m-osculating space of vn+m in the point (xs00 · · ·xsrr )(sk)|
∑
sk=n+m

Proof.

∂(m0,··· ,mr)(xs00 · · ·x
sr
r )(sk)|

∑
sk=n+m = (xs0−m0

0 · · ·xsr−mrr )(sk)|
∑
sk=n+m

where xs0−m0
0 · · ·xsr−mrr = 0 if sk < mk.

Let us consider the restriction of En,n+m to the Veronese vn, it gives

0 −−−−→ Sm ⊗OPS1(−n) −−−−→ Sn+m ⊗OPS1 −−−−→ En,n+m −−−−→ 0

By the above proposition we can interpret the first arrow as the matrix of m-partial
derivatives of Sn+m, and by the way to consider En,n+m as the bundle of degree n + m
hypersurfaces in PS1 with a singular point of order ≥ m+ 1. In other terms the fiber over
a point x is H0(mm+1

x (n+m))∗

6.8 Remark. The image of the projective bundle PEn,n+m ⊂ PS1× PSn+m by the second
projection is the m-osculating variety of vn+m.

One more time we consider the classical incidence variety and its restriction to vn

F q−−−−→ P(Sn)∨q−1(vn)
q−−−−→ vn

p

y p

y
P(Sn) P(Sn)

6.9 Proposition. En,n+m = p∗q
∗Ovn(n+m

n )(= p∗q
∗OPS1(n+m))

Proof. We have the following resolution of q−1(vn),

0 −−−−→ OPSn×vn(−1,−1) −−−−→ OPSn×vn −−−−→ Oq−1(vn) −−−−→ 0

and via the isomorphism of sheaves Ovn(1) = OPS1(n) it becomes

0 −−−−→ OPSn×PS1(−1,−n) −−−−→ OPSn×PS1 −−−−→ Oq−1(vn) −−−−→ 0

We tensorize by q∗OPS1(n + m) and take the direct image of the exact sequence on PSn
to obtain

0 −−−−→ Sm ⊗OPSn(−1) −−−−→ Sn+m ⊗OPSn −−−−→ En,n+m −−−−→ 0

41



6.10 Example. Let (X0, X1, X2) be a basis of V and (X2
0 , X0X1, X0X2, X

2
1 , X1X2, X

2
2 )

be a basis of S2V . Since S2V = H0(OPV (2)) = H0(OPS2V (1)) we introduce the notation
Z. to have a basis given by linear forms on PS2V instead of quadratic forms on PV , it
means that

(X2
0 , X0X1, X0X2, X

2
1 , X1X2, X

2
2 ) = (Z0, Z1, Z2, Z3, Z4, Z5)

Then over PV ∗ the matrix associated to Φ is X0 X1 X2 0 0 0
0 X0 0 X1 X2 0
0 0 X0 0 X1 X2


And the matrix associated to the map Φ over PS2V is Z0 Z1 Z2

Z1 Z3 Z4

Z2 Z4 Z5


In PS2V the locus defined by the vansishing of the determinant of this matrix is the locus
of singular conics.

6.1 Exercise. Consider the multiplication map S2V ⊗S2V → S4V where dimV = 3, and
find (after choosing a basis ) the matrix of the map

S2V ⊗OPS4V → S2V ∗ ⊗OPS4V (1)

Show that the degeneracy locus is the hypersurface of Clebsch quartics, already seen in
exercise 3.12.

6.1.4 Schwarzenberger bundles

Let U be a two dimensional vector space over C. According to the proposition 6.6, the
multiplication map

SmU ⊗ SnU φ−−−−→ Sn+mU

gives a bundle En,n+m on PSnU . These bundles, introduced by Schwarzenberger in [Sch1],
are now called Schwarzenberger bundles.

In order to have a nice matrix description, we denote by (t0, t1) a basis of U , (ui = ti0t
n−i
1 ),

(vj = tj0t
m−j
1 ), and (xl = tl0t

n+m−l
1 ) the respective basis of SnU, SmU and Sn+mU . Then

φ(ui ⊗ vj) = xi+j We have also the map

SmU −→ SnU∗ ⊗ Sn+mU

vj 7→
i=n∑
i=0

u∗i ⊗ xi+j

where (u∗i ) is the (dual) basis of SnU∗. Let

P(Sn+mU∗) = P(C[X0, ..., Xn+m]), and P(SnU) = P(C[U0, ..., Un])
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The representative matrix of the composed homomorphism

SmU −−−−→ SnU∗ ⊗ Sn+mU −−−−→ Sn+mU ⊗OP(SnU)(1)

vj 7→
i=n∑
i=0

u∗i ⊗ xi+j 7→
i=n∑
i=0

xi+jUi

is the following (m+ 1)× (n+m+ 1)-persymmetric matrix

Mm =



0 0 · · · 0 U0

· · · · · · · · · U0 U1

· · · 0 · · · U1 U2

0 U0 · · · U2 .
U0 U1 · · · · · · Un
U1 U2 · · · Un 0
U2 · · · · · · 0 · · ·
· · · Un · · · · · · · · ·
Un 0 · · · 0 0


In the same way the representative matrix of the composed homomorphism

SmU −−−−→ SnU∗ ⊗ Sn+mU −−−−→ SnU∗ ⊗OP(Sn+mU∗)(1)

vj 7→
i=n∑
i=0

u∗i ⊗ xi+j 7→
i=n∑
i=0

u∗iXi+j

is the following (m+ 1)× (n+ 1)-persymmetric matrix

Nn =



X0 X1 X2 · · · Xm

X1 X2 · · · · · · Xm+1

X2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · Xn+m−1

Xn · · · · · · Xn+m−1 Xn+m


The matrix Nn is the pull back by the natural (given by the Clebsch-Gordan decomposi-
tion) embedding

φ : P(Sn+mU) ↪→ P(SmU ⊗ SnU)

of the (m + 1) × (n + 1)-generic matrix. It is well known that (see ***) the zero locus
defined by the maximal minors of Nn is exactly the scheme of the n−1-plane n-secant (we
assume here that n ≤ m) to the normal rational curve Cn+m defined by the two-minors.
More generally the zero scheme defined by the i-st Fitting ideal is identified to the scheme
of (n− i− 1)-plane (n− i)-secant to the normal rational curve defined by the two-minors.
We will denote these varieties Vn−i

6.2 Exercise. Prove that Vn consists of the closure of the union of linear (n − 1)-
dimensional spaces which are n-secant to Cn. It is called the k-secant variety to Cn.
The 2-secant variety is the usual secant variety.
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6.11 Theorem. PEn,n+m is the blowing up of Vn along Vn−1

Proof. According to the matrix description above, P(En,n+m) is embedded in the product
P(SnU)×P(Sn+mU) as a subvariety defined by the equations ((

∑n
i=0 UiXi+j = 0)j=0,··· ,m).

We denote respectively by p and π the projection morphisms on P(Sn+mU) and P(SnU).
Then we will denote by OP(En,n+m)(a, b) the line bundle p∗OP(Sn+mU)(a)⊗ π∗OP(SnU)(b)
The image of P(En,n+m) by p is just Vn. The fiber over a general point (u0, · · · , un) is just
the Pn−1 defined by the m+ 1 linear equations ((

∑n
i=0 uiXi+j = 0)j=0,··· ,m) in P(Sn+mU).

These equations are also obtained by the product (u0, · · · , un)Nn. It means that this Pn−1

belongs to Vn. So it is clear that the morphism p : P(En,n+m) → Vn is birationnal and
isomorphic outside Vn−1. To show that Vn−1 is the center of the blowing up we have to
prove that p−1(Vn−1) is a divisor in P(En,n+m)

More generaly we determine the class of p−1(Vi) in the Chow ring A(P(En,n+m)) of
P(En,n+m).

6.12 Proposition. For any i < n there is an injective homomorphism of vector bundles

(i+ 1)OP(En,n+m)(−1, 0)
ψ−−−−→ (π∗En,n+m−i)

∗

such that V(∧i+1ψ) = p−1Vi and [p−1Vi] = cn−i(cokerψ) in A(P(En,n+m)).

Proof. For any i < n we have the following exact sequence on P(SnU)

0 −−−−→ Sm−iU(−l) Mm−i−−−−→ Sn+m−iU
(X0,··· ,Xn+m−i)−−−−−−−−−−→ Ekn+m−i −−−−→ 0

We dualize this exact sequence and look at it on P(En,n+m)

0 −−−−→ (π∗En,n+m−i)
∗ −−−−→ (Sn+m−iU)∗

tMm−i−−−−→ (Sm−iU)∗(0, 1) −−−−→ 0

We have also for any i < n a map on P(Sn+mU)

Sn+m−iU
φ−−−−→ SiU∗(1, 0)

where Vi = V(∧i+1φ) ⊂ P(Sn+mU) and φ is given by the following matrix

Ni =



X0 X1 X2 · · · Xn+m−i
X1 X2 · · · · · · Xn+m−i+1

X2 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · Xn+m−1

Xi · · · · · · Xn+m−1 Xn+m


As before we dualize this map and look at it on P(En,n+m)

SiU(−1, 0)
Ni−−−−→ (Sn+m−iU)∗

Since for any i < n the product tMm−iNi is zero on P(En,n+m) the composed homomor-
phim

SiU(−1, 0)
Ni−−−−→ (Sn+m−iU)∗

tMm−i−−−−→ (Sm−iU)∗(0, 1)
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is zero. Then there exists a non zero map

SiU(−1, 0)
ψ−−−−→ (π∗En,n+m−i)

∗.

By the snake lemma the cokernels of ψ and Ni are the same on P(En,n+m). So we can
deduce that V(∧i+1ψ) = V(∧i+1Ni) and this last one is the inverse image p−1Vi. Next
we verify easily that dimp−1Vi = n+ i− 1. The codimension (equal to (n− l)) is the one
expected and we can apply the Thom-Porteous formula to conclude.

It results that p−1Vn−1 is a divisor of P(En,n+m) defined by the determinant of

Sn−1U(−1, 0)
ψ−−−−→ (π∗En,m−1)∗.

By a simple computation of first Chern classes we find that p−1Vn−1 is defined by a non
zero section of OP(En,n+m)(n, n−m− 2) i.e. by one section of (SnEn,n+m)(n−m− 2). 2

6.13 Remark. [Va1] On P2, the existence of a non zero section of S2(E2
n+2)(−n) char-

acterizes Schwarzenberger bundle amomg the stable rank two vector bundles.

6.1.5 Application of Schwarzenberger bundles to the rational normal
curves

6.14 Theorem. Let U be a 2-dimensional vector space. Let C = P(U) ⊂ P(SnU) = Pn
be the rational normal curve. Then TPnC ' Sn−1U ⊗O(n+ 1) NC,Pn ' Sn−2U ⊗O(n+ 2)

Proof. The exact sequence defining the Schwarzenberger bundle O(−n) on P1 is

0−→OP1(−n)−→OP1 ⊗ SnU−→OP1(1)⊗ Sn−1U−→0

The first isomorphism immediately follows. Then we get the sequence

0−→OP1(2− n)−→OP1(1)⊗ Sn−1U−→N(−n)−→0

Tensoring by OP1(−3)

0−→O(−n− 1)−→O(−2)⊗ Sn−1U−→N ⊗OP1(−n− 3)−→0

so that

0−→H0(N ⊗OP1(−n− 3))−→Sn−1U
f−→Sn−1U−→H1(N ⊗OP1(−n− 3))−→0

By Schur lemma the map f is an isomorphism (why is not zero?), so that N ⊗OP1(−n−
3) = O(−1) ⊗W for some representation W . Comparing with the first sequence we get
W ' Sn−2U as we wanted . 2

6.15 Remark. H0(NC,Pn) = Sn+2U⊗Sn−2U = sl(SnU)/sl(U). This is the tangent space
at the Hilbert scheme SL(SnU)/SL(U) of rational normal curves.

6.16 Theorem. En,n+m|C = Sn−1(U)⊗OC(m+1
n ) = Sn−1(U)⊗OP1(m+ 1)
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Proof The bundle En,n+m over C can be interpretated as the bundle of m + 1-osculating
spaces to C (see prop. 6.7)). More precisely we have over P1

0−→SkU ⊗OP1(−n)−→Sn+mU ⊗OP1−→En,n+mP1−→0

The fiber of this bundle over x ∈ P1 is

H0(mm+1
x (n+m)) = H0(OP1(n− 1)) = Sn−1U

(see also Proposition 3.4) which is independent from x. 2

6.1.6 Splitting of Schwarzenberger bundle on lines

Approach with the incidence variety

Let U a vector space on C of dimension 2. We denote by Cn (resp. C∗n) the rational
normal curve in P(SnU) (resp. P(SnU∗)) image of P(U) (resp. P(U∗)) by the Veronese
morphism. Let X be the inverse image of C∗n in the incidence variety (point-hyperplane).
i.e.

X = {(x,H) | x ∈ H,H osculates Cn}

We call pr1 and pr2 the projection maps from X to P(SnU) and C∗n. We recall that we
can define Schwarzenberger’s bundle on P(SnU) as direct images of lines bundle on C∗n,
i.e En,m = pr2∗pr

∗
1OC∗n(mn ) (see prop. 6.9).

6.17 Theorem. ([ST] prop. 2.18) Let l ∈ P(SnU) be a general line. Let (q, ε) such that
m = qn+ ε with 0 ≤ ε < n. Then

(En,m)|l(−q) = [SεU ⊗Ol]⊕ [Sn−(ε+2)U ⊗Ol(−1)]

Proof. Since l is general we have an isomorphism pr−1
2 (l) ' C∗n

pr−1
2 (l)

i−→ X
↓ ↓
l −→ P(SnU)

Thus we have

(En,m)|l = pr2∗(pr
∗
1OC∗n(

n

k
)|pr−1

2 (l)) = pr2∗Opr−1
2 (l)(

m

n
) = pr2∗[Opr−1

2 (l)(q)⊗Opr−1
2 (l)(

ε

n
)]

Since on the rational curve pr−1
2 (l) ' C∗n there exists only one line bundle of degree nq,

we have pr∗2Ol(q) = Opr−1
2 (l)(q). Then by the projection formula we find

(En,m)|l = pr2∗Opr−1
2 (l)(

ε

n
)⊗Ol(q)

Remind the resolution of X ⊂ P(SnU)× P(U∗)

0→ OP(SnU)×P(U∗)(−1,−n)→ OP(SnU)×P(U∗) → OX → 0
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Over l the above exact sequence becomes

0→ Ol×P(U∗)(−1,−n)→ Ol×P(U∗) → Opr−1
2 (l) → 0

and after tensorization by OP(U∗)(ε) we obtain

0→ Ol×P(U∗)(−1, ε− n)→ Ol×P(U∗)(0, ε)→ Opr−1
2 (l)(

ε

n
)→ 0

Now take the direct image by pr2 of this exact sequence

0→ H0(OP(U∗)(ε))⊗Ol → pr2∗Opr−1
2 (l)(

ε

n
)→ H1(OP(U∗)(ε− n))⊗Ol(−1)→ 0

in other words

(En,m)|l(−q) = pr2∗Opr−1
2 (l)(

ε

n
) = [SεU ⊗Ol]⊕ [Sn−(ε+2)U ⊗Ol(−1)]

6.1.7 Approach with representation theory

Now we give a second proof of the splitting of the Schwarzenberger bundle, considering
the geometry of P(SnU). The isomorphisms

SnP(U) ' P(SnU) ' P(SnU∗)

are geometrically described by

u⊗a11 . . . u⊗akk → ∩iTn−aiui →< . . . , T ai−1
ui , . . . >

where
∑k

i=1 ai = n Let us fix r ≥ n, a rational normal curve

Cr ⊂ P r (6.2)

and an isomorphism

P(U) ' Cr (6.3)

then for any point of P(SnU) we get n points with multiplicity of Cr, hence a natural
morphism

i : P(SnU)→ Gr(Pn−1,Pr)

The Schwarzenberger bundle En,r on P(SnU) is isomorphic to i∗U∗ where U is the universal
bundle on the Grassmannian.
Since U is homogeneous, the isomorphism class of En,r does not depend on the choices
(6.2) and (6.3) .
We consider a line r through the points f and g corresponding to two polynomials SnU∗

without common factors. Let k + 1 = qn+ ε with 0 ≤ ε < n.
We want to give a second proof of the theorem [ST]
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Proof. Since c1(En+k
n) = k + 1 it is sufficient to prove that En+k

n
|r is isomorphic to

the direct sum of some copies of O(m) and O(m + 1) for a certain integer m. Indeed
m · (n− e) + (m+ 1) · e = k + 1 implies m = q and e = ε. It is sufficient to prove that

h0(r, En+k
n
|r(t)) · h

1(r, En+k
n
|r(t)) = 0 ∀t ∈ Z

¿From the sequence of the previous theorem it follows that h0(r, En+k
n
|r(t)) = 0 for t < 0.

For t ≥ 0, H0(r, En+k
n
|r(t)) and H1(r, En+k

n
|r(t)) are respectively kernel and cokernel of

the linear map

H0(r, Sn+kU ⊗O(t))→ H0(r, SkU ⊗O(t+ 1))

Then it is sufficient to prove that the previous map has maximal rank for t ≥ 0.
Let us consider the dual map

SkU∗ ⊗ St+1(f, g)→ Sn+kU∗ ⊗ St(f, g) (6.4)

which is described by

α⊗ f igt+1−i 7→ αf ⊗ f i−1gt+1−i + αg ⊗ f igt−i

The map (6.4) is the cohomology H0-map associated to the sheaf morphism on P(U)

O(k)⊗ St+1(f, g)→ O(n+ k)⊗ St(f, g) (6.5)

with matrix  f g
. . .

. . .

f g


Since f and g have no common factors it follows that the previous matrix has maximal
rank on every point of P(U). Then the sheaf morphism (6.5) on P(U) is surjective with
kernel O(k − n(t + 1)), and the associated H0-map (6.4) has maximal rank because for
every a ∈ Z h0(P(U),O(a)) · h1(P(U),O(a)) = 0.

6.1.8 Splitting on any line

6.18 Corollary. Let r be the line through f and g with deg GCD(f, g) = j. Let k + 1 =
q′(n− j) + ε′ with 0 ≤ ε′ < n− j. Then

En+k
n
|r ' O

j ⊕O(q′)n−ε
′ ⊕O(q′ + 1)ε

′

Proof. Let h = GCD(f, g). We remark that En+k
n restricted to Tn−jh has a trivial sum-

mand of rank j (this follows from the geometrical description because the n-ples of points
on Cn+k have j fixed points) and on the complementary summand we can apply the
theorem.

6.3 Exercise. (i) Prove that the loci in the Grassmannian of lines in Pn where the splitting
of En+k

n is the same are SL(2)-invariant.
(ii) Prove that under the splitting in Corollary 6.18 we have

En+k
n
|r ' [O ⊗ Cj ]⊕ [O(q′)⊗ Sn−ε′−1U ]⊕ [O(q′ + 1)⊗ Sε′−1U ]
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6.2 Characterization of Schwarzenberger bundles among Steiner
via the symmetry group

In this part we give a very short proof (based on Clebsch-Gordon problem for SL(2,C)-
modules) of the following result

A rank n Steiner bundle on Pn which is SL(2,C) invariant is a Schwarzenberger bundle.

We denote by Si the irreducible SL(2,C)-representations of degree i and by (xi−kyk)k=0,··· ,i
a basis of Si.

6.19 Theorem. Let V , I and W be three non trivial SL(2,C)-modules with dimension
n+1, m+1 and n+m+1 and φ ∈ P(V ⊗I⊗W ) an invariant hyperplane under SL(2,C).
Then,

φ /∈ (P(V )× P(I)× P(W ))∨ ⇔ φ is the multiplication Sn ⊗ Sm → Sn+m

Proof. When φ ∈ P(Sn ⊗ Sm ⊗ Sn+m) is just the multiplication Sn ⊗ Sm → Sn+m we
have seen that it corresponds to Schwarzenberger bundles.

Conversely, let V = ⊕i∈I(Si ⊗ Ui), B = ⊕j∈J(Sj ⊗ Vj) where Ui, Vj are trivial SL(2,C)-
representations of dimension ni and mj . Let xi ∈ Si, xj ∈ Sj be two highest weight vectors
and u ∈ Ui, v ∈ Vj . Since Det(φ) 6= 0, φ((xi⊗u)⊗(xj⊗v)) 6= 0 and by SL(2,C)-invariance
φ((xi ⊗ u) ⊗ (xj ⊗ v)) = xi+jφ(u ⊗ v) ∈ Si+j ⊗Wi+j . By hypothesis φ(u ⊗ v) 6= 0 for
all u ∈ Ui and v ∈ Vj so, by Theorem 6.3, it implies that dimWi+j ≥ ni + mj − 1, and

S
ni+mj−1
i+j ⊂ C∗.

Assume now that B contains at least two distinct irreducible representations. Let i0 and j0
the greatest integers in I and J . We consider the submodule B1 such that B1⊕S

mj0
j0

= B.
Then the restricted map V ⊗B1 → C∗ is not surjective because the image is concentrated

in the submodule C∗1 of C∗ defined by C∗1 ⊕ S
ni0+mj0−1

i0+j0
= C∗. Now since

dimC(W1) < dimC(V ) + dimC(I1)− 1

there exist a ∈ V , b ∈ I1 ⊂ B such that φ(a⊗ b) = 0. A contradiction with the hypothesis
Det(φ) 6= 0.

So V = Snii , I = S
mj
j and S

ni+mj−1
i+j ⊂W ∗. Since dimCW = dimCV + dimCI − 1, we have

(i+ 1)ni + (j+ 1)mj − 1 = dimCW ≥ (i+ j+ 1)(ni +mj − 1) which is possible if and only
if ni = mj = 1 and W = Si+j . 2

6.20 Corollary. A rank n Steiner bundle on Pn which is SL(2,C) invariant is a Schwarzen-
berger bundle.

Proof. Let S a rank n Steiner bundle on Pn, i.e S appears in an exact sequence

0 −−−−→ S −−−−→ W ⊗OP(V ) −−−−→ I∗ ⊗OP(V )(1) −−−−→ 0

where P(V ) = Pn, P(I) = Pm and P(W ) = Pn+m. If SL(2,C) acts on S the vector spaces
V , I and W are SL(2,C)-modules since V is the basis, I∗ = H1S(−1) and W ∗ = H0(S∗).
If S is SL(2,C)-invariant the linear surjective map

V ⊗ (H1S(−1))∗ → H0(S∗)
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is SL(2,C)-invariant too. 2

Remark. The proofs of the theorem and the proposition, given here, are still valid for
more than three vector spaces when the format is the boundary format.

6.2.1 Cosections and Poncelet’s curves

Let s ∈ H0(En,n+m) be a non zero section. We want to describe the zero locus Z(s)
geometrically. Since we have the following resolution

0 −−−−→ SmU ⊗OPSnU (−1) −−−−→ Sn+mU ⊗OPSnU −−−−→ En,n+m −−−−→ 0

we obtain H0(En,n+m) = Sn+mU . Thus we can see that this section s correspond to an
hyperplane Hs ⊂ P(Sn+mU) or to an effective divisor of degree n + m on the rational
curve Cn+m. The section s, or to be precise the cosection

(En,n+m)∗
s−−−−→ OP(SnU) −−−−→ OZ(s) −−−−→ 0

induces a rational map P(SnU) −→ P((En,n+m)∗) which is not defined over the zero-
scheme Z(s). First of all we remind that over a point x ∈ P(SnU) we have

π−1(x) = {(
i=n∑
i=0

xiXi+j = 0)j=0,··· ,m} = P(En,n+m(x)) = Pn−1

The rational map P(SnU) −→ P((En,n+m)∗) sends a point x ∈ P(SnU) onto Hs ∩ π−1(x)
which is in general a Pn−2, i.e a point in P((En,n+m)∗(x)) = Pn−1∗. This map is not
defined when π−1(x) ⊂ Hs. The hyperplane Hs cuts the rational curve Cn+m along an
effective divisor Dn+m of length n + m. The subschemes Dn ⊂ Dn+m of length n (they
are

(
n+m
n

)
when Dn+m is smooth) generate the (n−1)-planes n secant to Cn+m which are

contained in Hs. The corresponding point belongs to the zero-scheme Z(s).

Remind that we have En,n+m = pr1∗pr
∗
2OC∗n(n+m

m ) (prop. 6.9). Then to a section s ∈
H0(En,n+m) we can associate a divisor Dn+m of degree n + m on C∗n. The zero-scheme
Z(s) is the set of points x ∈ P(SnU) such that the divisor x∗ ∩ C∗n of degree n belongs to
Dn+m. When Dn+m is smooth, we get n + m osculating hyperplanes of Cn in P(SnU).
Every subset of n-osculating hyperplanes gives a point in P(SnU). These points are the
zero-scheme of the section s. We have proved the following proposition.

6.21 Proposition. Let s ∈ H0(En,n+m) be a non zero section and Dn+m be the corre-
sponding effective divisor of degree n + m on C∗n. We denote by Z(s) the zero-scheme of
s. Then,

x ∈ Z(s)⇔ x∗ ∩ C∗n ⊂ Dn+m(s)

More generally we have

6.22 Proposition. Let s ∈ H0(En,n+m) be a non zero section and Dn+m be the corre-
sponding effective divisor of degree n + m on C∗n. We denote by Z(s) the zero-scheme of
s. Then,

IZ(s) ⊂ mr+1
x ⇔ (x∗)r+1 ∩ C∗n ⊂ Dn+m(s)
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Proof. Assume IZ(s) ⊂ mr+1
x . Let Hs the hyperplane corresponding to the section s

and Dn the divisor on C∗n corresponding to x. Then < (r + 1)Dn >
∗⊂ Hs. This proves

(x∗)r+1 ∩ C∗n ⊂ Dn+m(s).

On the other hand, the inclusion < (r+ 1)Dn >
∗⊂ Hs proves that the exceptional divisor

< Dn >
∗ of P(IZ(s)) appears with multiplicity (r + 1), it means that IZ(s) ⊂ mr+1

x .

In this short part we want to explain the link between two geometric objects, the pencils
of section of Schwarzenberger bundles and the Poncelet curves.

To do such a link, it is necessary to describe more explicitly the zero-scheme of any (non
zero) section s ∈ H0E2,n.

A non zero section s ∈ H0E2,n gives a exact sequence

0 −−−−→ OP2
s−−−−→ E2,n −−−−→ IZ(s)(n− 1) −−−−→ 0

6.23 Lemma. Let s ∈ H0E2,n be a non zero section and Z(s) its zero-scheme. If L is a
tangent line to C2 secant to Z(s), then L is (n− 1)-secant to Z(s).

Proof. Since L is tangent to C2, we get a surjective homomorphism E2,n → OL which
proves that (E2,n)|L = OL(n− 1)⊕OL. The exact sequence

0 −−−−→ OP2
s−−−−→ E2,n −−−−→ IZ(s)(n− 1) −−−−→ 0

induces a surjective map (E2,n)|L → IL∩Z(s)/L(n − 1) (where IL∩Z(s)/L is the ideal sheaf
of the scheme L ∩ Z(s) in L). If L meets Z(s), it implies IL∩Z(s)/L(n− 1) = OL, in other
words L is n− 1 secant to Z(s). 2

6.24 Proposition. Let s ∈ H0E2,n be a non zero section and Z(s) be its zero-scheme.
Let Dn(s) =

∑
niL

∨
i the corresponding effective divisor of degree n on C2 :

1) The support of Z(s) consists in the set :
a) xij = Li ∩ Lj if i 6= j
b) xii = Li ∩ C∨ if ni ≥ 2.
2) Let Z(s) = ∪Zij where Zij is the subscheme of Z(s) supported by xij. Then we have :
a) Zii = Z(si) where si ∈ H0(E2,ni) is the section corresponding to the effective divisor
Dni = niL

∨
i .

b) Zii ∪ Zij ∪ Zjj = Z(sij) where sij ∈ H0(E2,ni+nj ) is the section corresponding to the
effective divisor Dni+nj = niL

∨
i + njL

∨
j .

Proof. The point x ∈ P2 belongs to Z(s) if and only if the line x∨ of P2∨ is twosecant to
Dn(s) (see prop 6.22). But the lines which are two-secant to Dn(s) are evidently the lines
x∨ij joining the points L∨i and L∨j of C∗2 for i 6= j and the lines tangent to C2∗ in a point
L∨i such that 2L∨i ∈ Dn(s). It proves 1).

For the second part, we remark that Zii is the two-secant subscheme of the divisor Dni =
niL

∨
i and that Zii ∪Zij ∪Zjj is the two-secant subscheme of the divisor Dni+nj = niL

∨
i +

njL
∨
j . These divisors correspond to the sections si ∈ H0(E2,ni) and sij ∈ H0(E2,ni+nj ).

51



6.25 Remark. We assume that n > 2. Dn(s) is smooth if and only if Z(s) is smooth, in
that case Z(s) consists of the vertices of the n-lines (distincts) tangent to C2.

More precisely we have :

6.26 Corollary. deg(OZii) = ni(ni − 1)/2, deg(OZij ) = ninj.
deg(OLi∩Zii) = ni − 1, deg(OLi∩Zij ) = nj.

Proof. deg(OZii) = c2(E2,ni) = ni(ni − 1)/2.
deg(OZij ) = c2(E2,ni+nj )− deg(OZii)− deg(OZjj ) = ninj .
The line Li is ni−1-secant to Zii because it is a tangent to C2 meeting the zero-scheme of
the section si ∈ H0(E2,ni) (Remark 6.23). In the same way, the line Li is (ni+nj−1)-secant
to Z(sij). Since it is ni − 1-secant to Zii it is nj secant to Zij .

The following definition of Poncelet curves is given by Trautmann ([Tr], def).

6.27 Definition. A curve S ⊂ P2 of degree (n − 1) will be called Poncelet related to C2

if there is a pencil Λ of effective degree-n divisors on C2 such that for any two points of a
divisor of Λ the tangents of C2 in these points meet on S.

The above definition does not consider the case where the pencil contains an effective
divisor of degree n > 2 concentrated on a point. Let us consider a pencil Λ of effective
divisors of degree n on C∗2 ⊂ P2∗ such that for every divisor Dn of Λ, the scheme of the
two-secant to Dn is contained in S. This is equivalent to the above definition when the
general divisor of the pencil is smooth. Then we could define Poncelet’s curves when the
general divisor is not smooth. Thus we will use the following definition.

6.28 Definition. A curve S ⊂ P2 of degree (n− 1) is Poncelet related to C2 if and only
if S is the determinant of a pencil of sections of de E2,n.

Thanks to this observation we give a short proof to the following classical theorem due to
Darboux.

6.29 Theorem. (Darboux) Let S ⊂ P2 a curve of degree (n − 1) and C a smooth conic
of P2∨. If there exists a effective divisor Dn, of degree n, on C such that the scheme of
two-secant is contained in S, then S is a Poncelet related curve to C∗.

Proof. The divisor Dn is defined by a section of OC(n2 ). It induces a section s ∈ H0(En)
(with En = pr1∗pr

∗
2OC(n2 )) such that the zero-scheme Z(s) is the scheme of the two-secant

to Dn :

0 −−−−→ OP2
s−−−−→ E2,n −−−−→ IZ(s)(n− 1) −−−−→ 0

The curve S is a section of IZ(s)(n − 1). Then it exists a non-zero section t of E2,n such
that s ∧ t = 0 is the equation of S.
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Chapter 7

First examples of moduli of
bundles

7.1 Basic definitions and properties

We refer to [HuLe] for a detailed treatment of moduli spaces of bundles. Here we want
only to mention the basic definitions.

7.1 Definition. A flat family of bundles on X parametrized by S is given by a scheme F
together with a flat morphism F → S ×X. Two such families F1

p1−→S ×X, F2
p2−→S ×X

are called equivalent if there is L ∈ Pic(S) such that F1 = π∗L ⊗ F2, where π is the first
projection.

All bundles in a flat family have the same Chern classes and the same rank. From now on
we fix Chern classes ci ∈ Ai(X) and rank r ∈ N. When X = Pn the ci can be considered
as integers.
A moduli space for bundles with fixed ci and r is a scheme that intuitively parametrizes all
possible bundles E such that ci(E) = ci and rank(E) = r. A problem arises because there
are in general nontrivial flat families of arbitrary large dimension. This problem has been
solved by considering only some bundles called stable bundles, that in turn are a special
case of the stable (torsion free) sheaves. The following definition of stability was given
by Mumford in order to satisfy in a certain setting the stability requirement of GIT. We
state the definition for an arbitrary ample line bundle L on X, but the reader interested
only to the case X = Pn can take L = O(1).

7.2 Definition. A bundle E on X is called stable (resp. semistable) with respect to a
ample line bundle L if for every subsheaf F with 0 < rank(F ) < rank(E) we have

c1(F ) · Ln−1

rank(F )
< (resp. ≤)

c1(E) · Ln−1

rank(E)

The expression c1(E)·Ln−1

rank(E) is called the slope of E and it is denoted by µ(E).

On Pn c1(E) is an integer and we have the simpler expression

µ(E) =
c1(E)

rk(E)
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If a subsheaf F ⊂ E has µ(F ) ≥ µ(E) we say that F destabilizes E.

7.1 Exercise. Given the exact sequence

0→ E → F → G→ 0

prove that µ(F ) is strictly included between µ(E) and µ(G) with the only exception
µ(E) = µ(F ) = µ(G).

7.2 Exercise. Given a bundle E prove that µ(∧kE) = µ(SkE) = kµ(E). Hint: Use the
splitting principle 5.3.1.

7.3 Exercise. Given a bundle E on Pn prove that for any integer t

µ(E(t)) = µ(E) + t

7.3 Definition. Let Pic(X) = Z, so that c1 can be considered as a integer. A bundle E
on X is called normalized if c1(E) ∈ {−(r − 1), . . . ,−1, 0} (this condition is satisfied by
E(t) for a unique t, we denote by Enorm this unique twist of E).

7.4 Remark. E is normalized if and only if −1 < µ(E) ≤ 0.

The following criterion is useful in order to check the stability

7.5 Proposition. (Hoppe) Let Pic(X) = Z. Let E be a bundle of rank r.
If H0

((
∧k(E)

)
norm

)
= 0 for 1 ≤ k ≤ r then E is stable.

Sketch of proof Consider a subsheaf F of E of rank k. From 0 → F → E we get 0 →
(∧kF )∗∗ → ∧kE. Now (∧kF )∗∗ is a line bundle (see [OSS] ), hence (∧kF )∗∗ = O(kµ(F )).
It follows that there is a section of ∧kE(−kµ(F )), hence µ

(
∧kE(−kµ(F ))

)
> 0, that is

µ(F ) < µ(E) as we wanted.

7.6 Remark. The converse of the above proposition does not hold. A counterexample is
given by the nullcorrelation bundle N (see Section 7.4) on P3 having c1(N) = 0, c2(N) = 2,
which is stable but contains O as direct summand of ∧2N so that h0(∧2N) 6= 0.

An interesting application of the above proposition is the following

7.7 Proposition. A Steiner bundle of rank n on Pn is stable.

Proof. Consider a bundle E on P(V ) appearing in the sequence

0−→I ⊗O(−1)−→W ⊗O−→E−→0

where dimV = n + 1, dim I = k, dimW = n + k. Since
(
∧k(E)

)
norm

=
(
∧k(E)

)
(t) for

some t ≤ 1 then it is sufficient to prove that h0
((
∧k(E)

))
(−1) = 0. Consider the q − th

exterior power, twisted by O(−1)

0−→SqI⊗O(−q−1)−→ . . .−→I⊗∧q−1W ⊗O(−2)−→∧qW ⊗O(−1)−→(∧qE)(−1)−→0

Taking cohomology the result follows.

7.4 Exercise. Prove that a stable normalized bundle satisfies h0(E) = 0
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7.5 Exercise. Prove that E ⊕ F is semistable if and only if E and F are both semistable
with the same slope. Prove that stable bundles are always indecomposable.

7.6 Exercise. Prove that if E is stable then E∗ is stable. Prove that E is stable if and
only if E ⊗ L is stable for some line bundle L.

7.8 Remark. If E and F are stable then E ⊗ F is polystable, i.e. is the direct sum of
stable bundles with the same slope. This fact is quite deep and can be proved by using
Einstein metrics. Maruyama proved in [Mar1] that if E, F are semistable then E ⊗ F is
semistable.

7.9 Definition. A bundle is called simple if H0(EndE) = C that is if its only endomor-
phisms are homotheties.

7.10 Theorem. Stable bundles are simple

Proof. Let f : E → E. Fix a point x ∈ X, there there is an eigenvalue λ for fx : Ex → Ex.
It follows that f −λI is not a isomorphism. Suppose that it is not zero. Then ker(f −λI)
and im(f − λI) have both rank strictly included in [0, r]. By the exercise 7.1 one of these
destabilizes E.

Let us fix ci and r
There is a basic functor Fci,r from the category of schemes to the opposite (with arrows
reversed) category of sets, namely (for simplicity we omit the suffix {ci, r}).

F : Schemes→ (Sets)0

S 7→ {equivalence classes of flat families of stable bundles over S with fixed ci, r}

7.11 Definition. M is called a coarse moduli space if there is transformation of func-
tors

F (−)→ Hom(−,M)

such that
i) for every M ′ with a transformation of functors F (−)→ Hom(−,M ′) there is a unique
π : M →M ′ such that the following diagram commutes

F → Hom(−,M)
↘ ↓

Hom(−,M ′)

ii) there is a biunivoc correspondence between reduced points of M and stable bundles on
X with assigned ci and r.

M satisfying the minimality condition i) is called to corepresent F .

7.12 Definition. F is called represented by M if F (−) = Hom(−,M). In this case M
is called a fine moduli space.

55



This implies (why?) that there exists a flat family P parametrized by M such that all
other flat families are obtained by this one as pullback. P is called the Poincaré bundle.
A fine moduli space is also a coarse moduli space.
Fine moduli spaces do not exist in general, but only in special cases. A famous theorem
of Maruyama states that coarse moduli spaces always exist for projective X, and they are
even compactified by a projective scheme M ⊂M adding equivalence classes of semistable
sheaves.
Moduli spaces of G-bundles
In general the transition functions of bundles take value in GL. If the bundle carry a
symmetric nondegenerate bilinear form (i.e. ω : E → E∗ such that ω∗ = ω then we can
consider transition functions that leave ω invariant, i.e. they lie in SO or in its universal
covering Spin. E becomes a Spin-bundle in this way. When the transition functions
take value in G we say that E is a G-bundle and G is called the structural group of the
bundle.It makes sense to consider flat families of G-bundles where G ⊂ GL and we have
the analogous notion of moduli space parametrizing G-bundles.

The tangent space at [E]
The tangent space of the coarse moduli space M of G-bundles on X with assigned ci
and r is isomorphic to the cohomology group H1(adE). Here adE is the adjoint bundle
defined by the adjoint representation G→ adG. In general G = GL and correspondingly
adE = EndE. In case G = SL we have adE = EndE/O. In case G = Spin or G = SO
we have adE = ∧2E. In case G = Sp we have adE = S2E.
More precisely there is a Kuranishi map, coming from deformation theory

H1(adE)
k−→H2(adE)

such that the holomorphic germ of M at [E] is defined by k = 0. It follows that if
H2(adE) = 0 then [E] is a smooth point and the estimate h1(adE)−h2(adE) ≤ dimEM ≤
h1(adE).
If E is only a stable sheaf, it belongs to the Maruyama moduli space of GL-bundles and the
tangent space at E is isomorphic to Ext1(E,E). Moreover there is a Kuranishi morphism
Ext1(E,E)→ Ext2(E,E) with the same properties as in the bundle case.

7.2 Minimal resolutions

For any torsion free sheaf E over Pn there is a minimal resolution

0→ Fn−1 → . . .→ F1 → F0 → E → 0

where every Fi is a direct sum of line bundles. The minimal resolution remains exact when
we perform the H0-sequence

0→ H0(Fn−1(t))→ . . .→ H0(F1(t))→ H0(F0(t))→ H0(E(t))→ 0

for every t ∈ Z. Moreover the minimality condition requires that no line bundle can be
dropped in two adjacents Fi and Fi−1, this is equivalent to the fact that no constant entry
appears in the matrices representing the morphisms of the resolution. These properties
characterize uniquely the minimal resolution.
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In particular on P2 every torsion free sheaf E has a minimal resolution

0→ ⊕O(−ai)→ ⊕O(−bj)→ E → 0

We consider the case rkE = 2. We assume

a1 ≤ . . . ≤ ak
b1 ≤ . . . ≤ bk+2

¿From [DM] or [1] it follows that the generic E the ai, bj can take at most three different
values and that maxj{bj} −mini{ai} ≤ 2.
We want to give some bounds on ai, bj . We first need a technical lemma.

7.13 Lemma. Let 0 ≤ b1 ≤ b2 be integer numbers. Then
(i) b21 + b22 − 2b2(b1 + b2 − 1)− 1 ≤ 0
Let 1 ≤ b1 ≤ b2 be integer numbers. Then
(ii) b21 + b22 − 2b2(b1 + b2 − 1) ≤ 0
(iii) b21 + b22 − 2b2(b1 + b2 − 2)− 2 ≤ 0

Proof (i) and (ii) are straightforward looking at the corresponding hyperbolas in the plane.
(iii) is trivial by the factorization

b21 + b22 − 2b2(b1 + b2 − 2)− 2 = (b1 − b2(1 +
√

2) +
√

2)(b1 − b2(1−
√

2)−
√

2)

7.14 Proposition. (i) c1(E) =
∑k

i=1 ai −
∑k+2

i=1 bi
(ii) 2c2(E)− c2

1(E) =
∑k

i=1 a
2
i −

∑k+2
i=1 b

2
i

(iii) bi+2 < ai for i = 1 . . . k

Proof (i) and (ii) are straightforward. (iii) is proved in [BS].

7.15 Proposition. Let c1(E) = 0. E is stable (resp. semistable) if and only if b1 ≥ 1
(resp. b1 ≥ 0).
Let c1(E) = −1. E is stable if and only if it is semistable if and only if b1 ≥ 1 (resp.
b1 ≥ 0).

Proof b1 ≥ 1 is equivalent to H0(E) = 0. b1 ≥ 0 is equivalent to H0(E(−1)) = 0.
The following propositions are taken from the thesis [D], with some improvements.

7.16 Proposition. If E is normalized and semistable then

bk+2 +
k − 1

2
≤ c2

If moreover E is stable and c1(E) = 0 then

bk+2 +
k

2
≤ c2
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Proof Assume E semistable and c1(E) = 0. Then

2c2 = −b21− b22 +

k∑
i=1

(a2
i − b2i+2) = −b21− b22 +

k∑
i=1

(ai− bi+2)(ai+ bi+2−2b2) + 2b2(b1 + b2) ≥

≥ −b21 − b22 +
k∑
i=1

(ai + bi+2 − 2b2) + 2b2(b1 + b2) ≥

(by using ai ≥ bi+2 + 1)

≥ −b21 − b22 + 2
k∑
i=1

(bi+2 − b2) + k + 2b2(b1 + b2) ≥

≥ −b21 − b22 + 2bk+2 − 2b2 + k + 2b2(b1 + b2) ≥ 2bk+2 + k − 1

where in the last inequality we have used (i) of Proposition 7.13. The other cases are
similar by using (ii) and (iii) of Proposition 7.13.

7.17 Proposition. If E is normalized and semistable then

ak +
k − 3

2
≤ c2

If moreover E is stable and c1(E) = 0 then

ak +
k − 2

2
≤ c2

Proof Assume E stable and c1(E) = 0.

2c2 = −b21 − b22 + (a2
k − b2k+2) +

k−1∑
i=1

(a2
i − b2i+2) =

= −b21 − b22 + (a2
k − b2k+2) +

k−1∑
i=1

(ai − bi+2)(ai + bi+2 − 2b2) + 2b2(b1 + b2 + bk+2 − ak) ≥

≥ −b21 − b22 + (a2
k − b2k+2) +

k−1∑
i=1

(ai + bi+2 − 2b2) + 2b2(b1 + b2 + bk+2 − ak) ≥

(by using ai ≥ bi+2 + 1)

≥ −b21 − b22 + (a2
k − b2k+2) + 2

k−1∑
i=1

(bi+2 − b2) + (k − 1) + 2b2(b1 + b2 + bk+2 − ak) ≥

≥ −b21 − b22 + (ak − bk+2)(ak + bk+2 − 2b2) + (k − 1) + 2b2(b1 + b2)

If ak − bk+2 = 1 we have the thesis from the previous proposition.
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If ak − bk+2 ≥ 2 we get

2c2 ≥ −b21−b22+2(ak+bk+2−2b2)+(k−1)+2b2(b1+b2) ≥ 2(ak+bk+2−b2)+(k−1) ≥ 2ak+(k−1)

where we have used (ii) of Proposition 7.13. This is slightly stronger that we claimed. The
other cases are similar by using (i) and (iii) of Proposition 7.13.

Remark Given (c1, c2) of a normalized semistable torsion free sheaf of rank 2 on P2

there are only finitely many sequences of integers a1 ≤ . . . ≤ ak, b1 ≤ . . . ≤ bk+2 which
satisfy the Proposition 7.14 and the inequalities of Proposition 7.15, Proposition 7.16 and
Proposition 7.17. This is the first nontrivial case of what is called the boundedness theorem
for semistable sheaves, proved first by Maruyama (see [HuLe]). We underline that without
the semistability assumptions, it is possible to find infinitely many sequences of integers
a1 ≤ . . . ≤ ak, b1 ≤ . . . ≤ bk+2 which satisfy only the Proposition 7.14.

Applications:

7.18 Theorem. Let E be a torsion free sheaf of rank 2 over P2 .
If (c1, c2) = (−1, 1) and E is semistable then there is a sequence

0−→O(−2)−→O(−1)3−→E−→0

If (c1, c2) = (0, 2) and E is stable then there is a sequence

0−→O(−2)2−→O(−1)4−→E−→0

If (c1, c2) = (0, 2) and E is strictly semistable then there is a sequence

0−→O(−3)−→O(−2)⊕O(−1)⊕O−→E−→0

If (c1, c2) = (−1, 2) and E is (semi)stable then there is a sequence

0−→O(−3)−→O(−2)⊕O(−1)2−→E−→0

Proof (c1, c2) = (−1, 1) and (semi)stable implies 1 ≤ bi ≤ 1− k−1
2 hence k = 1, b1 = b2 =

b3 = 1 and a1 = −1 +
∑3

i=1 bi = 2.

(c1, c2) = (0, 2) and stable implies 1 ≤ bi ≤ 2 − k
2 hence k ≤ 2, and bi = 1. If k = 1

then a1 = 0 +
∑3

i=1 bi = 3 and a2
1 −

∑3
i=1 b

2
i = 6 which is a contradiction. Hence k = 2

and a1 + a2 = 4, a2
1 + a2

2 =
∑4

i=1 b
2
i + 4 = 8 which implies a1 = a2 = 2. If E is only

semistable we have the weaker inequality 0 ≤ bi ≤ 2 − k−1
2 which gives k ≤ 5. Moreover

1 ≤ ai ≤ 2 − k−3
2 . If a1 = 1 then bi = 0 and c1(E) > 0 which is a contradiction. Hence

a1 ≥ 2 which gives k ≤ 3. If k = 3 then a1 = a2 = a3 = 2 which forces
∑5

i=1 bi = 6,
0 ≤ bi ≤ 1 which is a contradiction. If k = 2 then a1 = a2 = 2 and we find again the
stable case. The last possibility is k = 1, hence 2 ≤ a1 ≤ 3 and 0 ≤ bi ≤ 2. The system∑3

i=1 bi = a1,
∑3

i=1 b
2
i = a2

1 − 4 has the only solution a1 = 3, (b1, b2, b3) = (0, 1, 2).

(c1, c2) = (−1, 2) and (semi)stable implies 1 ≤ bi ≤ 2 − k−1
2 hence k ≤ 3. If k = 3 then

bi = 1, ai ≥ 2 which contradicts
∑3

i=1 ai = −1+
∑5

i=1 bi = 4. The same argument excludes

59



the case k = 2. Hence k = 1 and 1 ≤ bi ≤ 2, 2 ≤ a1 ≤ 3. The system
∑3

i=1 bi = a1 + 1,∑3
i=1 b

2
i = a2

1 − 3 has the only solution a1 = 3, (b1, b2, b3) = (1, 1, 2).

Exercise With the notations above let (c1, c2) = (0, 1) and E semistable. Prove that
there is only the following minimal resolution

a1 = 2, (b1, b2, b3) = (0, 1, 1)

The following two exercises require more computations. They become straightforward by
using a computer.
Exercise With the notations above let (c1, c2) = (0, 3) and E semistable, prove first that
k ≤ 3. Then the possible minimal resolutions are the following ones:

(a1, a2) = (3, 3)(b1, b2, b3, b4) = (0, 2, 2, 2)

(a1, a2) = (2, 3)(b1, b2, b3, b4) = (1, 1, 1, 2)(stable)

a1 = 4, (b1, b2, b3) = (0, 1, 3)

a1 = 3, (b1, b2, b3) = (1, 1, 1)(stable)

Exercise Let (c1, c2) = (−1, 3) and E (semi)stable, prove first that k ≤ 3. Then the
possible minimal resolutions are the following ones:

(a1, a2) = (3, 3)(b1, b2, b3, b4) = (1, 2, 2, 2)

a1 = 4, (b1, b2, b3) = (1, 1, 3)

7.3 Examples on P2

7.19 Theorem. Moduli spaces of G-bundles over P2 are smooth.

Proof. By Serre duality h2(EndE) = h0(EndE(−3)) = 0.

The Hirzebruch-Riemann-Roch theorem implies that for a rank 2 bundle on P2 we have

χ(E) =
1

2
(c1(E)2 − 2c2(E) + 3c1(E) + 4) (7.1)

χ(EndE) = c1(E)2 − 4c2(E) + 4

Hence if E is stable we get

h1(EndE) = dimEM = −c2
1(E) + 4c2(E)− 3 (7.2)

which is the dimension of the moduli space at E.
We will see the first examples of bundles of rank 2 on P2 and P3.

7.20 Theorem. Let E be a stable rank 2 bundle on P2 with c1(E) = 0. Then c2(E) ≥ 2.

Proof. By the exercise 7.4 we have h0(E) = 0. By Serre duality h2(E) = h0(E∗(−3)) =
h0(E(−3)) = 0. Hence 0 ≤ h1(E) = −χ(E) = (by (7.1) = 1

2(2c2(E)−4) as we wanted.
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7.7 Exercise. Let E be a stable rank 2 bundle on P2 with c1(E) = −1. Prove that
c2(E) ≥ 1.

We denote by MP2(c1, c2) the moduli space of stable 2-bundles on P2.
By the previous results MP2(0, c2) is empty if c2 ≤ 1 and MP2(−1, c2) is empty if c2 ≤ 0.
Moreover dimMP2(0, k) = 4k − 3 for k ≥ 2 and dimMP2(−1, k) = 4k − 4 for k ≥ 1.

MP2(−1,1)

7.21 Theorem. MP2(−1, 1) is given by one point, it contains only the bundle TP2(−2).

We sketch two different proofs of the previous basic theorem. Although each of these
two needs some tool not covered in these notes, we think they touch different interesting
aspects of the theory that deserve to be deepened.
first proof By Proposition 7.5 TP2(−2) ∈ M(−1, 1), which is then not empty. By
(7.2) dimM(−1, 1) = 0. It follows that SL(3) acts trivially on M(−1, 1), that is every
E ∈M(−1, 1) is homogeneous. We have P2 = SL(3)/P and it is now a standard fact that
E comes from an irreducible representation of rank 2 of P . Since the semisimple part of
P is SL(2), there is only the standard representation which gives our bundle. 2

second proof By Theorem 7.18 E ∈M(−1, 1) appears in a sequence

0→ O(−2)
A−→O(−1)3 → E → 0

We have to prove that all bundles E appearing in the above sequence are isomorphic. In
fact A is given in coordinates by (l0, l1, l2) where li =

∑2
j=0 aijxj . Now A is a constant

rank map iff the three lines {li = 0} have no common intersection, which means that the
3 × 3 matrix aij is nondegenerate. Since two nondegenerate matrices are equivalent by
GL(3)-action the result follows. 2

7.22 Remark. It is not known if the moduli space containing TPn is a point for n ≥ 5.
This is true for n ≤ 4.

MP2(−1,2)

We sketch now a proof that M(−1, 2) is the projective space of symmetric matrices 3× 3
of rank 2, that is M(−1, 2) is isomorphic to S2P2 \∆ ' Sec(v2) \ v2 where v2 := v2(P2) is
the Veronese surface in P5

You see that SL(3) acts transitively over M(−1, 2).
By Theorem 7.18 E ∈M(−1, 2) iff it appears in a sequence

0→ O(−3)
f,q1,q2−→ O(−2)⊕O(−1)2 → E → 0

f is the equation of a line, qi are conics. We want to associate a pair of distinct lines to
such a bundle. This is accomplished by the following exercises.
< q1, q2 > defines a 2-dimensional space in H0(f,O(2)) = C3. This is called classically a
g2

1 (linear series).

7.8 Exercise. E is locally free iff the corresponding g2
1 has no fixed points.
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7.9 Exercise. {f = 0} is the unique jumping line of E.

7.10 Exercise. The g2
1 has two distinct double points P1, P2 on the line {f = 0}. E is

uniquely determined by these two points.

The isomorphism
M(−1, 2)→ S2P2 \∆

is given geometrically by
E 7→ {P1, P2}

7.23 Remark. The jumping lines of the second kind (see the next chapter 8) are exactly
the lines in the two pencils through P1 and P2.

7.24 Remark. The closure M(−1, 2) is NOT Sec(v2) but it is the blow-up of Sec(v2)
along v2. In this way the variety obtained lies naturally in the variety of complete conics.

MP2(0,2)

7.25 Theorem. M(0, 2) is the projective space of nondegenerate conics, that is M(0, 2)
is isomorphic to P5 \ V3, where V3 is the determinantal hypersurface of degree 3.

By Theorem 7.18 E ∈M(0, 2) iff it appears in a sequence

0→ O(−2)2 → O(−1)4 → E → 0

The morphism is represented by a 2×4 matrix with entries homogeneous linear polynomials
in three variables, that is by a 2 × 3 × 4 matrix. The hyperdeterminant of this matrix
is nonzero (see the chapter 9 on hyperdeterminants). It is a basic fact that two such
matrices are GL(2)×GL(3)×GL(4)-equivalent (see the Theorem 9.24 on multidimensional
matrices). E is a Schwarzenberger bundle. The jumping lines fill a smooth conic in P2. By
the geometrical construction of the Schwarzenberger bundles, the conic of jumping lines
determines the bundle, (see the Proposition 6.9, where it is shown that the bundle can be
reconstructed by the rational normal curve) proving the Theorem 7.25.
The Maruyama closure M(0, 2) is obtained by adding the semistable sheaves F which have
the minimal resolution

0→ O(−3)→ O(−2)⊕O(−1)⊕O → F → 0

Such F has a section vanishing on two points Z. The sheaf O⊕IZ is also a semistable free
torsion sheaf which is equivalent to F in M(0, 2) . It can be proved that the sheaves added
correspond exactly to the degenerate conics, that is M(0, 2) = P5. M(0, n) is singular for
n ≥ 3.

7.26 Remark. P2 is a toric variety, under the action of T = C∗×C∗. There is a induced
action of T over M(c1, c2). The fixed points of this action are the T -invariant sheaves.
Hence from these informations it is possible to compute topological invariants of M(c1, c2).
For example, suppose that T acts as (t1, t2)·(x0, x1, x2) = (x0, t1x1, t2x2). The T -invariant
bundles with c1 = 0, c2 = 2 are

0→ O(−3)
x0,x21,x

3
2−→ O(−2)⊕O(−1)⊕O → F → 0

and the other five bundles corresponding to the 6 permutations of {x0, x1, x2}. In fact
χ(P5,Z) = 6.
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7.11 Exercise. Compute χ of M(−1, 2) and of M(−1, 2).

Hint: The exceptional divisor in M(−1, 2) is a P1-bundle over a surface isomorphic to P2

and its χ is the same as χ(P1 × P2).

7.4 The nullcorrelation bundle

Let MP3(0, 1) be the moduli space of stable rank 2 bundles over P3 with c1 = 0, c2 = 1.

7.27 Theorem. MP3(0, 1) is the projective space of nondegenerate skewsymmetric matri-
ces 4× 4, that is MP3(0, 1) is isomorphic to P5 \Q4, where Q4 is a smooth 4-dimensional
quadric (Klein quadric).

It can be proved by Beilinson theorem that every E ∈MP3(0, 1) appears in a sequence

0→ O(−1)→ Ω1(1)→ E → 0

E is called a nullcorrelation bundle. In fact Hom(O(−1),Ω1(1)) ' ∧2V . This can be
proved by considering the second wedge power of the Euler sequence. The Theorem 7.27
is now proved by the following exercise.

7.12 Exercise. i)Prove that O(−1)
ω−→Ω1(1) with ω ∈ ∧2V is a injective bundle map if

and only if ω is nondegenerate. ii) Prove that ω1, ω2 ∈ ∧2V define isomorphic bundles iff
there is t ∈ C∗ such that ω1 = tω2.

7.13 Exercise. Prove that the restriction of a nullcorrelation bundle to a linear P2 ⊂ P3

is never stable.

7.28 Remark. The above properties characterizes the nullcorrelation bundle among all
stable 2-bundles on P3 ([Ba1]). In [Co1] were characterized the stable bundles on P3 that
become unstable on a family of planes of dimension at least 2.

You see that SL(4) acts transitively over MP3(0, 1). Every nullcorrelation bundle is sym-
plectic, moreover it is also Sp(4)-invariant.
The geometrical interpretation of nullcorrelation bundles is the following. A skew sym-
metric nondegenerate matrix 4 × 4 J induces a morphism J : P3−→P3∨ such that ∀p ∈
P3, p ∈ J(p). Now for every p ∈ P3, consider the line Np given by all the lines in J(p)
through p. We get a P1-bundle which is the projective bundle P(N).
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Chapter 8

Jumping lines, jumping conics and
the Barth morphism

8.1 Generalities about jumping lines

Let E be a stable rank 2 vector bundle on Pr (r ≥ 2) with Chern classes c1 = 0 or
c1 = −1 and c2 = n. We will speak about even bundle when c1 = 0 and odd bundle in
the other case. It is well known that, when the rank of the bundle E is equal to 2, it is
stable (resp. semi-stable) if and only if H0(E) = 0 (resp. H0(E(−1)) = 0). The notions
of semi-stability and stability coincide for odd bundle. The first important result is the
following theorem due to Grauert and Mulich

8.1 Theorem. Let E a semi-stable rank two vector bundle on Pr and l a general line.
Then El = Ol ⊕Ol if E is even, El = Ol ⊕Ol(−1) if E is odd.

Over some lines, called jumping lines, the bundle does not split in the above way. More
precisely we can describe the set S(E) of jumping lines of E in the following way

S(E) = {l,H0(El(−1)) 6= 0}

Example 1 Assume that E is semi-stable but not stable. Then we have h0(E) = 1 and the
unique (modulo multiplication by scalar) non zero section of E gives the following exact
sequence

0→ OPr −→ E −→ IZ(s)→ 0

where the zero-scheme Z(s) of degree n is a scheme of codimension two in Pr. Let l a line
in Pr, we restrict the above exact sequence to l

0→ Ol −→ El −→ IZ(s)⊗Ol → 0

Since we have the following isomorphism of sheaves

IZ(s)⊗Ol = IZ(s)∩l/l ⊕R

where R is a torsion sheaf supported by Z(s) ∩ l we obtain that
• El = Ol ⊕Ol when l does not meet Z(s)
• El = Ol(a)⊕Ol(−a) when l(OZ(s)∩l) = a.
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We would like now to show that S(E) possesses a natural scheme structure. For this
observe that the cohomological condition H0(El(−1)) 6= 0 is equivalent to the condition
• H1(El(−1)) 6= 0 when E is even
• H1(El) 6= 0 when E is odd.

Now, consider the incidence variety point-line and the canonical projection morphism

Pr p←− F p−→ G(1,Pr)

The jumping lines of E define a closed subset in G(1,Pr) which is the support of the
coherent sheaf
• R1q∗(p

∗E(−1)) when E is even
• R1q∗p

∗E when E is odd

8.2 Theorem. (Barth, [Ba1] thm****) When c1(E) is even S(E) is a divisor of degree
n.
When c1(E) is odd (and E general in the moduli space) S(E) is a codimension two sub-

variety of degree n(n−1)
2 .

Proof We give the proof on P2. For the general case you can refer to the original Barth’s
paper ([Ba1]). In that case the incidence variety F is a divisor in P2 × P2∗ defined by the
equation

∑i=2
i=0XiX

∗
i = 0 where Xi (resp. X∗i ) are the homogeneous coordinates on P2

(resp. on P2∗). Thus we have the canonical resolution

0→ OP2×P2∗(−1,−1) −→ OP2×P2∗ −→ OF → 0

First case : E even Now tensorize this exact sequence by p∗E(−1) and take the direct
image by q on P2∗. Since H0(El) = 0 for the general line we find that q∗(p

∗E(−1)) = 0.
Then we obtain

0→ H1(E(−2))⊗OP2∗(−1)
φ−→ H1(E(−1))⊗OP2∗ −→ R1q∗(p

∗E(−1))→ 0

The Riemann-Roch-Grothendieck formula gives X (E(t)) = (t + 1)(t + 2) − n. From the
stability of E and the Serre duality we find h1(E(−1)) = h1(E(−2)) = n andH1(E(−1)) =
H1(E(−2))∗ which implies that φ could be represented by a square symmetric matrix with
linear forms as coefficients. ***add theta characteristic It follows that the support of the
scheme R1q∗(p

∗E(−1)) is defined by the equation det(φ) = 0.

Second case : E odd Tensorize the above exact sequence by p∗E and take the direct image
by q on P2∗. Since H0(El) = 1 for the general line we find that q∗p

∗E is a rank 1 sheaf on
P2∗. Moreover we can verify that E is a line bundle. Then we obtain

0→ q∗p
∗E −→ H1(E(−1))⊗OP2∗(−1)

φ−→ H1(E)⊗OP2∗ −→ R1q∗p
∗E → 0

The Riemann-Roch-Grothendieck formula gives X (E(t)) = (t+1)2−n. From the stability
of E we find h1(E(−1)) = n and h1(E(−2)) = n − 1 which implies that φ could be
represented by a n × (n − 1) matrix with linear forms as coeficients. It follows that the

support of the scheme R1q∗p
∗E is a two codimension subscheme of degree n(n−1)

2 defined
by the V (∧n−1φ), except when the maximal minors possed a common factor.

8.3 Remark. For any stable rank two vector bundle E such that c1(E) is odd the codi-
mension of S(E) is at most 2.
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8.2 Barth morphism on P2

Let M(0, n) be the coarse moduli scheme of semi-stable coherent sheaves of rank 2 with
Chern classes (0, n) on P2. This variety is a projective, irreducible variety of dimension
4n − 3. We recall that a locally free sheaf representing a point of M(0, n) is necessarily
stable. Let us denote by U(0, n) the open set of points representing locally free sheaves.
The closed set of classes of singular sheaves is an hypersurface in M(0, n) that we denote
by δM(0, n). By the property of a coarse moduli scheme we obtain a morphism

M(0, n)
γ−→ P(H0(P2∗, OP2∗(n))), [E] 7→ S(E)

This map was first considered by Barth. It is known that the restriction of the morphism
γ to the open set U(0, n) is quasi-finite (**** number of theta-char on one curve is finite),
that the the restriction to δM(0, n) has fibers of dimension ≥ 1 (**** cite Maruyama),
and the image of the boundary is contained in the closed set of reducible curves (**** cite
Maruyama). This implies that the image of γ is also an irreducible variety of dimension
4n − 3. It is also known that there exists a smooth curve in the image (see Barth [Ba1],
prop¿ ****).

Very recently LePotier and Tikhomirov have showed that the degree of the map γ :
M(0, n) −→ Imγ is 1 for n ≥ 4. The computation of the degree of the image is related to
the computation of Donaldson numbers on P2. When n < 4 we have
• if n = 2 the map is an isomorphism
• if n = 3 this map is surjective and of degree 3.

The dimension of the linear system P(H0(P2∗, OP2∗(n))) is n(n+3)
2 , and for n ≥ 4 we have

dimM(0, n) < n(n+3)
2 . When n = 4 the dimension of the moduli space is 13 and the

dimension of the projective space of quartics is 14. The curves of the divisor γ(M(0, 4))
are the so called Luroth quartics, i.e plane quartics circumscribed to a true pentagon.
We will call the hypersurface L := γ(M(0, 4)) the Luroth hypersurface. It is not easy to
find the equation of this hypersurface, but in 1918 Frank Morley already wrote that the
Luroth’s invariant is of degree 54.

8.4 Proposition. Let E be a general bundle in M(0, 4). Then S(E) is a Luroth quartic.

Proof. By computing its Euler-Poincare polynomial we find X (E(1)) = 2.

8.1 Exercise. Assume that h1(E(1)) = 1. Show that there exists a jumping line of order
3.

Thus in general we have h1(E(1)) = 0 and h0E(1) = 2. Since all the jumping lines of E
are of order 1 the determinant of the two independant sections of E(1) is a smooth conic,
i.e we have

0→ 2OP2 −→ E(1) −→ Θ→ 0

where Θ is supported by a smooth conic C. Dualize this exact sequence we get

0→ E(−1) −→ 2OP2 −→ Ext1(Θ, OP2)→ 0
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By computing the Chern classes we find that Ext1(Θ, OP2) = OC(5
2). Now apply the

functor p∗q
∗ to the last exact sequence. Since for the general line l we have h0El(−1) = 0

we have p∗q
∗E(−1) = 0 so a short exact sequence

0→ 2OP2∗ −→ p∗q
∗OC(

5

2
) −→ R1p∗q

∗E(−1)→ 0

Since a Poncelet related curve of degree 4 is the determinant of two linearly independant
sections of the Schwarzenberger’s bundle E5 = p∗q

∗OC(5
2) this proves that the curve of

jumping lines of E is a Luroth quartic.

8.2 Exercise. More generally show that the Poncelet’s curves belong to the image of γ
for any n. For this consider the family of bundles E such that h0(E(1)) = 2 (called
Hulsbergen’s bundle).

For n ≥ 5 the dimension of the family of Poncelet’s curves is strictly smaller than the
dimension of Imγ. When n > 4 Matei Toma in [To] has shown that the Barth morphism
restricted to the subscheme of Hulsbergen bundles is generically injective. It means that
a general Poncelet’s curve is associated to only one smooth conic.

8.3 Barth morphism on Schwarzenberger bundles

Let C a smooth conic with equation f = 0 on P2∗ and E2n+1 the even Schwarzenberger’s
bundle associated to C. The second Chern classes of the normalized bundle E2n+1(−n) is
n(n+ 1). We denote by mC the divisor defined by the equation fm = 0.

8.5 Proposition. S(E2n+1) = n(n+1)
2 C

*** preuve a developper avec Daniele *** Proof. Since E2n+1 is SL(2,C) = Aut(C)-
invariant its divisor of jumping lines is supported by C. Its degree is n(n + 1), thus the
proposition is proved. 2

Let γ : M(0, n(n + 1)) −→ P(H0(P2∗, OP2∗(n(n + 1)))). The above proposition showed

that the image of E2n+1 is the curve n(n+1)
2 C. Since this curve does not contain a linear

component we know that the fiber γ−1(n(n+1)
2 C) is finite. We show the following

8.6 Theorem. γ−1(n(n+1)
2 C) = {E2n+1} (set-theoretically).

Moreover if m is an integer which could not be written under the form n(n + 1) for any
integer n then the curve mC does not belong to the image of γ.

Proof. Let E a vector bundle in the finite fiber γ−1(mC). Let σ ∈ SL(2,C), since
S(σ∗E) = σ.S(E) = mC we deduce that SL(2,C) acts on γ−1(mC). But SL(2,C) is
connected thus this action is trivial. It means that for any bundle E ∈ γ−1(mC) and any
σ ∈ SL(2,C) we have σ∗E = E .

The following proposition proves the theorem

8.7 Proposition. The only stable SL(2,C)-invariant bundles of rank 2 on P2 are the
Schwarzenberger bundles.
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Proof of the proposition. We denote by C∗ the image of P1 by the Veronese morphism
P1 ↪→ P2 ' S2P1, π the morphism of degree 2 P1 × P1 −→ P2 ' S2P1 which send the
couple (x, y) to the intersection point of the lines tx and ty tangent to C∨ in the points
π(x, x) and π(y, y). We denote also p1 and p2 the canonical projections of P1 × P1 on
each factor. The action of SL2(C) on P1 induces an action on P2 which identifies SL2(C)
to Aut(C∗) (resp. on P2∗ which identifies SL2(C) to Aut(C) where C is the dual conic).
More precisely, let σ ∈ SL2(C) and z = π(x, y) a point of P2 the induced action on P2 is

σ.z = π(σx, σy).

Let F be a stable rank two vector bundle on P2 SL2(C)-invariant, i.e. such that σ∗F = F
for all σ ∈ SL2(C). Then we have (σ, σ)∗(π∗F ) = π∗F . We show thanks to a idea of
Schwarzenberger ([Sch2], §3) that the bundle π∗F corresponds to an SL2(C)-homorphism
between two irreducible representations of SL2(C).

We recall that a line bundle on P1 × P1 is of the following form

OP1×P1(a, b) ' p∗1OP1(a)⊗ p∗2OP1(b) and that π∗OP2(1)) = OP1×P1(1, 1)

We will assume that c1(F ) = 0 or c1(F ) = −1 and we will denote c1(F ) = c1. Since the
action of SL2(C) on P2 (resp. P2∗) has two orbits say C∨ and P2 \ C∨ (resp. C and
P2∗ \ C), it is clear that the support of S(F ) is C and that the order of jump is the same
for every jumping line (i.e. it exists an integer n > 0 such that h0(Fl(−n)) = 1 for any
line l ∈ C).

Let x ∈ P1 and tx the tangent to C coming from the point π(x, x). By hypothesis on the
jump order we have, h0(Ftx(−n)) = 1. We deduce that

p1∗π
∗F (−n) = OP1(−m) avec m > 0

Since the jump is uniform, the induced homomorphism π∗F∨(n) −→ p∗1OP1(m) is surjec-
tive. Its kernel is a line bundle on P1×P1. An easy computation of first Chern classes show
that this kernel is OP1×P1(2n −m − c1, 2n − c1). The vector bundle π∗F∨(n) correspond
to a non zero element (since it is not decomposed) of

Ext1(OP1×P1(m, 0), OP1×P1(2n−m− c1, 2n− c1)) = H1(OP1×P1(2n− 2m− c1, 2n− c1))

The surjective homorphism π∗F∨(n) −→ p∗1OP1(m) induces a non zero homorphism on P2

F∨(n) −→ Em,C

Since E1,C = 2OP2 we have m ≥ 2 if not h0(F (−n)) 6= 0 which is a contradiction with the
stability of F . Then the bundles F∨(n) and Em,C are stable. Then the homomorphism is
of maximal rank. Thus we find c1(F∨(n)) = 2n − c1 ≤ c1(Em,C) = m − 1. In particular
2n− 2m− c1 − 1 < 0 which implies by the Kunneth formula for sheaves [BS]

H1(OP1×P1(2n− 2m− c1, 2n− c1)) = H1(OP1(2n− 2m− c1))⊗H0(OP1(2n− c1))

and by Serre duality

H1(OP1×P1(2n− 2m− c1, 2n− c1)) = Hom(H0(OP1(2(m−n− 1) + c1), H0(OP1(2n− c1)))
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We denote by απ∗F the homorphism (modulo a multiplicative scalar) corresponding to the
bundle π∗F . Let Φ = (σ, σ) an automorphism of P1 × P1 with σ ∈ SL2(C). The bundle
Φ∗π∗F is represented by the homorphism

αΦ∗π∗F = σ∗απ∗F (σ∗)−1

In the other hand, Φ∗π∗F = π∗F which proves that the homomorphism απ∗F is SL2(C)-
invariant. Since H0(OP1(r)) ' SrH0(OP1(1)) is an irreducible representation of SL2(C)
we deduce that 2(m − n − 1) + c1 = 2n − c1. It means c1(F∨(n)) = c1(Em,C) and then
F∨(n) = E2n+1−c1,C . 2

Unfortunately this result does not prove that the following Barth morphism

γ : M(0, n(n+ 1)) −→ P(H0(P2∗, OP2∗(n(n+ 1))))

is generically injective. Indeed we will show that the Schwarzenberger’s bundle belong to
the ramification of this map. In other word the differential map

dγ[E2n+1] : T[E2n+1]M(0, n(n+ 1)) −→ Tn(n+1)
2

C
P(H0(P2∗, OP2∗(n(n+ 1))))

is not injective. Indeed this map is certainly an equivariant map and (according to the
SL(2) = SL(A)-action on P2 = P(S2A))

T[E2n+1]M(0, n(n+ 1)) = H1(EndE2n+1) =
n+1∑
i=2

S2iA

Tn(n+1)
2

C
P(H0(P2∗, OP2∗(n(n+ 1)))) = H0(On(n+1)

2
C

(n(n+ 1)) =

[
n(n+1)

4
]−1∑

i=0

Sn(n+1)−4iA

Let n ≥ 2. We see that S6A belongs to the kernel of this map when n(n+ 1) = 0(mod4)
and that S4A belongs to the kernel of this map when n(n+ 1) = 2(mod4).

8.3 Exercise. Prove the above equalities.

8.4 Hulek curve of jumping lines of second kind

What’s about odd bundle. We have seen that in general the scheme of jumping lines of
an odd bundle on P2 is a finite scheme. In some cases, for instance for Schwarzenberger’s
bundle, this scheme contain a divisor. For schwarzenberger’s bundle it is easy to prove (by
using SL(2,C)-invariance) that this scheme is a divisor supported by a smooth conic. We
are able to caracterize those bundles which possed a line in their scheme of jumping lines
(see for instance [Va4]). Hulek associates to any odd bundle of Chern classes (−1, n) a
plane curve in the dual plane P2∗ of degree 2(n− 1). For a bundle E this curve is denoted
C(E) and called curve of jumping lines of second kind. Set theoretically this curve is

C(E) = {l ∈ P2∗ | H0El2 6= 0}

First of all, like for jumping lines, we need the following important result due to Hulek.
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8.8 Theorem. (Hulek) For the generic line l we have H0El2 = 0.

Now let F2 the divisor in P2 × P2∗ defined by the equation (
∑i=2

i=0XiX
∗
i )2 = 0 where Xi

(resp. X∗i ) are the homogeneous coordinates on P2 (resp. on P2∗). Thus we have the
canonical resolution

0→ OP2×P2∗(−2,−2) −→ OP2×P2∗ −→ OF2 → 0

We denote by p and q the projections on each factor P2 and P2∗ and p̄, q̄ their restrictions
to F2. Since q̄−1(l) = l2, the above theorem assure that q̄∗p̄

∗E = 0. Now we are able to
give the proof of the following

8.9 Theorem. (Hulek) C(E) is a curve of degree 2(c2E − 1).

Proof. We tensorize the resolution of F2 by p∗E and we apply the functor q∗. Since
q̄∗p̄
∗E = 0 we find

0→ H1(E(−2))⊗OP2∗(−2)
φ−→ H1(E)⊗OP2∗ −→ R1q̄∗p̄

∗E → 0

Since h1E = h1E(−2) = c2 − 1 and H1E = (H1E(−2))∗ the map φ could be represented
by a symmetric matrix of quadratic forms. Then supp(R1q̄∗p̄

∗E) = det(φ) is a curve of
degree 2(c2 − 1). 2

We would like to give an other result about the curve of jumping lines of second kind
without proof. Then we will finish this part about Hulek morphism with examples.

8.10 Proposition. (Hulek) For every odd bundle E with c2E = n we have S(E) ⊂
SingC(E) with equality for the general bundle.

Proof. Remember that the incidence variety F is defined in P2 × P2∗ by the equation∑i=2
i=0XiX

∗
i = 0. We do not make a distinction between the projections p and q and their

restrictions on F. Then we have the following exact sequence

0→ OF(−1,−1) −→ OF2 −→ OF → 0

which is the relative version of

0→ Ol(−1) −→ Ol2 −→ Ol → 0

We tensorize this exact sequence by p∗E and we apply q∗. Thus we obtain the long exact
sequence

0→ q∗p
∗E → (R1q∗p

∗E(−1))(−1)→ R1q̄∗p̄
∗E → R1q∗p

∗E → 0

The surjective arrow R1q̄∗p̄
∗E → R1q∗p

∗E implies that every jumping lines is a jumping
lines of the second kind. Moreover, since the rank 1 sheaf R1q∗p

∗E(−1) is not locally
free over the jumping lines, this exact sequence shows that any jumping line is singular in
C(E). We omit to prove the equality for the general bundle. 2
We want to study the image of the morphism

C : M(−1, n) −→ P(H0(OP2∗(2n− 2)))
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8.4 Exercise. For c2 = 1 the only bundle of M(−1, 1) does not have jumping lines. Show
that it also does not have any jumping lines of the second kind.

If c2 = 2, let s ∈ H0E(1) a non zero section, we have the exact sequence induced by s

0→ OP2 −→ E(1) −→ IZ(s)(1)→ 0

where Z(s) consists of two distinct points x and y. The only jumping lines is the line
passing through x and y. The curve C(E) is a curve of degree 2 with one singular point.
Since h0E(1) = 2 and the determinant of this pencil is the line passing through x and y, we
deduce by Hurwitz formula that there are two sections s and t such that their zero schemes
are double points. So every lines D passing through Z(s) or Z(t) verify H0ED2 6= 0.

If c2 = 4 show that the curve C(E) of the general odd bundle is a sextic with six singular
points. When E is the Schwarzenberger’s bundle E4 associated to the conic C then
C(E4) = 3C.

8.5 Jumping conics

Let E be a stable rank two vector bundle on P2. We assume that E is normalized i.e.
c1(E) = 0 or −1. Let C be a smooth conic of P2. Since this conic is isomorphic to
P1 the Grothendieck’s theorem implies that EC = OC(a2 ) ⊕ OC( b2) where OC(a2 ) means
the line bundle on C with degree a and a + b = 2c1(E). Moreover the Grauert-Mulich
theorem implies that for the general conic of P2 we have EC = OC ⊕ OC when E is
even, EC = OC(−1

2 )⊕OC(−1
2 ) when E is odd. Now we can define the jumping conics for

smooth conics. They are the one such that the decomposition is not as above. Since the
Grothendieck’s theorem is not valid over singular conics, we need to define the jumping
conics with a cohomological condition (equivalent for smooth conics).

8.11 Definition. A conic C is a jumping conic for E if{
EC 6= 2OC when c1 = 0
h0(EC) 6= 0 when c1 = −1

We denote by J(E) the set of jumping conics. The Grauert-Mulich theorem applied to
conics leads to the following result ([Man] thm 1.8)

8.12 Theorem. J(E) is a divisor of P(H0(OP2(2))) and degJ(E) = c2 + c1.

Proof. Consider the incidence variety point-conic ie the divisor F ⊂ P2 × P5 defined set
theoretically by

F = {(x,C) | x ∈ C}

and defined by the equation

X2
0Y0 +X0X1Y1 +X0X2Y2 +X2

1Y3 +X1X2Y4 +X2
2Y5 = 0

We denote by p and q the projections on P2 and P5 respectively. Thus we have the following
resolution of F in P2 × P5

0→ 0P2×P5(−2,−1) −→ 0P2×P5 −→ OF → 0
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— Assume first that the bundle E is odd. After tensoring this exact sequence by p∗E and
taking the direct image on P5 we obtain

0→ H1E(−2)⊗OP5(−1) −→ H1E ⊗OP5 −→ R1q∗p
∗E → 0

Indeed, the Grauert-Mulich ’s theorem implies that q∗p
∗E = 0. Since h1E(−2) = h1E =

c2 − 1 the support of R1q∗p
∗E is a divisor of degree c2 − 1.

Remark. Consider the Veronese morphism P2∗ ↪→ P5 which sends a line l to the conic
l2. We denote by V the image of P2∗. The support of R1q∗p

∗E ⊗OV is a curve of degree
4(n− 1). Since the Veronese morphism is of degree 2 this proves the Hulek’s theorem.

— Assume now that the bundle E is even. The sheaf q∗p
∗E is a rank 2 reflexive sheaf on

P5. Its first Chern class is −c2. Indeed, consider the following exact sequence

0→ q∗p
∗E → H1E(−2)⊗OP5(−1)→ H1E ⊗OP5 −→ R1q∗p

∗E → 0

Since h1E(−2) = c2 and h1E = c2 − 2 the codimension of the support of R1q∗p
∗E is

generically 3. Let l a general line in P5, here general means : l do not meet neither the
support of R1q∗p

∗E neither the singular locus of q∗p
∗E (in fact they certainly coincide).

Then the restriction of the above exact sequence is

0→ q∗p
∗E ⊗Ol → H1E(−2)⊗Ol(−1)→ H1E ⊗Ol → 0

This proves that c1(q∗p
∗E) = −c2.

The canonical map (evaluation) ev : q∗q∗p
∗E → p∗E becomes over a conic C

OC ⊕OC −→ EC

So ev is lying over the jumping conics. But the zero locus of ev is defined by its determinant
which is an hypersurface of degree c1(p∗E)− c1(q∗q∗p

∗E) = c2. 2

Singular conics

Let l1 ∪ l2 a couple of lines meeting transversally and l2 the singular conic supported by l.

8.13 Proposition. If E is even, then
— l1 ∪ l2 is a jumping conic if and only if at least one of the two lines li is a jumping line
for E.
— l2 is a jumping conic if and only if l is a jumping line.

Proof. Assume first that l1 ∪ l2 /∈ J(E). The following exact sequence

O → Ol1(−1) −→ Ol1∪l2 −→ Ol2 → 0

tensorized by E gives

O → El1(−1) −→ Ol1∪l2 ⊕Ol1∪l2 −→ El2 → 0

Since the last arrow is surjective we have El2 = Ol2 ⊕ Ol2 . By changing the role of l1
and l2, we prove also that l1 /∈ S(E). In the same way if l1 and l2 are not in S(E)
then we obtain H0El1∪l2 = H0(Ol2 ⊕ Ol2). Then any section is non zero everywhere, so
El1∪l2 = Ol1∪l2 ⊕Ol1∪l2 .

The same proofs work for l2 instead of l1 ∪ l2. 2
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8.14 Proposition. Assume that E is odd. If at least one of the two lines li is a jumping
line for E then l1 ∪ l2 is a jumping conic for E.

Proof. Assume first that l1 ∈ S(E). The following exact sequence

O → Ol1(−1) −→ Ol1∪l2 −→ Ol2 → 0

tensorized by E shows that h0El1∪l2 6= 0.

The converse is in general false. Indeed we have dim(J(E)∩S) = 3 but dim(P2∗×S(E)) =
2. 2

We have already proven the following proposition in the text concerned with Hulek curve.

8.15 Proposition. If E is odd and l is a jumping line then l2 is a jumping conic.

In fact we know that J(E) ∩ V is exactly the image of the Hulek curve C(E) by the
Veronese morphism.

8.5 Exercise. Assume that E is odd and that l2 ∈ J(E) but l /∈ S(E). Then prove that
El2 = Ol2 ⊕Ol2(−1).

Find by yourself the following exact sequences

O → Ol1∪l2 −→ Ol1 ⊕Ol2 −→ Ol1∩l2 → 0

O → Ol1(−1) −→ Ol1∪l2 −→ Ol2 → 0

O → Ol(−1) −→ Ol2 −→ Ol → 0

8.6 Jumping lines for Logarithmic bundles on P2.

Let H = {H1, · · · , Hn+k+1} be an arrangement of n+ k + 1 hyperplanes in general linear
position in Pn . We denote by E(H) the bundle of meromorphic forms having at most
logarithmic poles over H. It is a basic fact, proved first by Deligne, that E(H) appears in
a exact sequence

0→ ΩPn −→ E(H) −→ ⊕n+k+1
i=1 OHi → 0

The aim of this section is to prove that a Logarithmic bundle is a Steiner bundle.

8.16 Proposition. E(H) is a Steiner bundle.

Proof. First of all we will prove that one extension

0→ ΩPn −→ . −→ ⊕n+k+1
i=1 OHi → 0

is a Steiner’s bundle. Then we will show that all such extensions (which are bundle of
course) are isomorphic.
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Let (Xi) be the coordinates on Pn and (αij) the complex numbers such that Hj =∑
i=0,··· ,n αijXi. Since the hyperplanes of H are in general linear position there are ex-

actly k relations between them, say Hn+k+1 = (
∑

j=1,··· ,n+k aljHj)l=1,··· ,k. Consider the
following commutative diagram.

0 −−−−→ OPn(−1)
A−−−−→ On+k+1

Pn (−1)
B−−−−→ On+k

Pn (−1) −−−−→ 0

(Xi)

y M

y N

y
0 −−−−→ On+1

Pn
(αij)−−−−→ On+k+1

Pn
D−−−−→ OkPn −−−−→ 0

Where A = t(1, · · · , 1), M =


Hn+k+1

H1

H2 ...
... Hn+k

,

B =


1 −1
1 0 −1
1 0 0 −1...
1 0 ...0 −1

, N =


a1,1H1 a1,2H2 a1,n+kHn+k

a2,1H1 a22H2 a2,n+kHn+k

... ...
ak,1H1 ak,2H2 ... ak,n+kHn+k

, and

where D is the matrix with only 1 on the first column and (−alj) on the others.

Now you can verify as an exercise that N is surjective. Its kernel is a bundle S∗(−1) such
that S is Steiner. Apply the snake lemma, then you find

0→ S∗(−1) −→ Ω∗Pn(−1) −→ ⊕n+k+1
i=1 OHi → 0

Dualize this exact sequence, then you get

0→ ΩPn −→ S −→ ⊕n+k+1
i=1 OHi → 0

The following lemma will prove that two bundles which appear as extension

0→ ΩPn −→ . −→ ⊕mi=1OHi → 0

are isomorphic.

8.17 Lemma. Let (H1, · · · , Hm), m hyperplanes in Pn, φ and ψ two surjective homomor-
phisms φ, ψ : Ω∗Pn(−1) −→ ⊕mi=1OHi. Then the bundles ker(φ) and ker(ψ) are isomorphic.

Proof. Since Ω∗Pn(−1)|Hi = OHi ⊕ Ω∗Hi(−1) and H0(ΩHi(1)) = 0 we have

Hom(Ω∗Pn(−1),⊕mi=1OHi) ' Hom(⊕mi=1OHi ,⊕mi=1OHi)

Since the homomorphisms φ and ψ are surjectives the induced matricesMφ, Mψ of complex
numbers are of maximal rank. Then we have the following relation MψM

−1
φ φ = ψ, in other

words the following commutative diagram

0 −−−−→ ker(φ) −−−−→ Ω∗Pn(−1)
φ−−−−→ ⊕mi=1OHi −−−−→ 0

'
y '

y MψM
−1
φ

y
0 −−−−→ ker(ψ) −−−−→ Ω∗Pn(−1)

ψ−−−−→ ⊕mi=1OHi −−−−→ 0

***Add the proof that singular plane cubics form a hypersurface of degree 12 , S. Gimignano***
***Include Torelli with simplified proof (work on P(W) in fact...) ****
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8.7 Jumping conics of Schwarzenberger’s bundle.

With the same notations than before we define En = p∗q
∗OD∗(

n
2 ). We recall that S(En)

is supported by D∗. Moreover if l is a jumping line for En we have h0(En|l(1 − n)) = 1.
By definition, or by construction En is invariant under the action of SL2(C) ' Aut(D).

Some notations
Let ψ : P2∗ × P2∗ → P5 the morphism which sends a couple of lines on the conic union of
these lines. The threefold T = ψ(P2∗×D∗) consist in degenerated conic such that one line
of its support is tangent to D. The morphism ψ restricted to the diagonal is the Veronese
morphism v : P2∗ ↪→ P5. The variety Sec(v(D∗)) of lines bisecants to v(D∗) is a threefold
of degree 3. You can obtain it by intersection of the hypersurface S = ψ(P2∗ × P2∗) with
the hyperplane < v(D∗) >.
From now we assume that n ≥ 3.

8.18 Theorem. J(En) = Cn

Proof : First we remark that the two hypersurfaces have the same degree and that Cn is
reduced. Then it is enough to show that we have Cn ⊂ J(En) on the open set of smooth
conics.

Let C a smooth conic n-circumscribed to D. The
(
n
2

)
vertices defined by the data of n-

tangent lines are the zeroes of one section s ∈ H0(En) ([?], proposition 1.4). The following
exact sequence

0→ OP2
s−→ En −→ IZ(s)(n− 1)→ 0

restricted to C shows that En|C = OC(n2 )⊕OC(n−2
2 ). 2

8.19 Proposition. Let C be a smooth osculating conic (resp.surosculating) to D.
Then C /∈Mn(D).

Proof. A point in v(D∗) corresponds to a degenerated conic supported by a tangent line
to D. A point in the developable surface of v(D∗) corresponds to a degenerated conic
supported by a tangent line l to D and by an other line meeting l at the tangent point
l ∩D. The variety of osculating conic (resp. surosculating) is the cone with vertex D and
basis the developable surface of v(D∗) (resp. the cone with vertex D and basis v(D∗)).
But SL2(C) acts transitively on the smooth conics of these two cones. It follows that if
one of them belongs to Mn(D) then all of them belong to Mn(D). In particular the vertex
of the cone belong to Mn. But the following exact sequence

0→ En(−1) −→ En −→ OD(
n− 1

2
)→ 0

proves that D /∈ J(En). We deduce that Mn meets the osculating cone along the devel-
opable and the surosculating cone along the rational quartic. 2

8.6 Exercise. Prove the existence of this above exact sequence.

Of course the divisor J(En) meets the hypersurface S. When n is odd supp(J(En) ∩
S) ⊂ T. It is a consequence of S(En) supported by D∗ ([Man], remarque 1.2 et lemme
1.3). Moreover, since J(En) ∩ S and T are both SL2(C)-invariant threefolds, we have
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supp(J(En) ∩ S) = T. When n is even we still have T ⊂ supp(J(En) ∩ S) but there are
others jumping conics in S. To determine which one are jumpinc conics we will study
Mn ∩ S.

8.20 Theorem. (i) [M2n+1 ∩ Sec(v(P2∗))]red = T
(ii) [M2n ∩ Sec(v(P2∗))]red = T ∪

⋃
z∈P2n

Ω̄
( 1+z2

2z
)2

8.7 Exercise. Prove this theorem.

8.21 Corollary. The degenerated jumping conics are
(i) [J(E2n+1) ∩ Sec(v(P2∗))]red = T
(ii) [J(E2n) ∩ Sec(v(P2∗))]red = T ∪

⋃
k≥2,k|n

⋃
z∈P2k

Ω̄
( 1+z2

2z
)2

Proof. It is an immediate consequence of the above theorem and the fact that J(En) =⋃
r≥3,r|nMr. 2

8.8 Singular locus of J(En)

Quite nothing is known about this problem. From Barth and Bauer’s paper it follows that
a smooth conic n-circumscribed to D (and meeting D in four distinct points) is a smooth
point of Mn. Then this conic is a smooth point of J(En) too. This is not suprising since
the jump order is as small as possible. But the link between jump order and singular point
is not established yet, and we could expect, like in the case of jumping lines, that there is
no coincidence. We could observe that the conic of T are singular in J(En) when n ≥ 5 is
not a prime number. Moreover the jump order is the greatest one.

8.22 Proposition. Any conic C /∈ T verify h0(En|C(−[n2 ]− 1)) = 0.
If C ∈ T we have h0(En|C(2− n)) 6= 0 and h0(En|C(1− n)) = 0.

Proof. Assume first that C /∈ T. When C is smooth you saw (in the proof of the first
thm) that h0(En|C(−[n2 ] − 1)) = 0. It proves the proposition when n is odd. When n is
even, the exact sequence ([Va1] page 435, suites de liaison)

0→ En −→ En+1 −→ Ol → 0

where l is a tangent line to D proves that

h0(En|C(−[
n

2
]− 1)) 6= 0⇒ h0(En+1|C(−[

n

2
]− 1)) 6= 0.

Since [n2 ] = [n+1
2 ] this implies C ∈ J(En+1) which is a contradiction.

Assume now that C = l∪ d with one of the two lines l and d is tangent to D (if l = d, the
conic l ∪ d corresponds to the double line). When l eis tangent to D, the exact sequence

0→ Ol(−1) −→ Ol∪d −→ Od → 0

proves, after tensorisation by En, that h0(En|l∪d(2− n)) 6= 0.

Next we shows h0(En(1− n)) = h1(En(−1− n)) = 0 with the resolution

0→ (n− 1)OP2(−1)→ (n+ 1)OP2 → En → 0

This implies h0(En|l∪d(1− n)) = 0.
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Chapter 9

Hyperdeterminants

9.1 Multidimensional boundary format matrices

Hyperdeterminants were introduced by Cayley in [Cay], then this notion was forgotten
until Gelfand, Kapranov and Zelevinsky recently rediscovered Cayley’s results and gave a
modern account of the subject. It is well known that a square matrix A is nondegenerate
if and only if the homogeneous linear system A · x = 0 has only the zero solution. This
notion of nondegeneracy can be generalized to the multidimensional matrices, in this case
the above linear system will be replaced by a suitable multilinear system. In the case of
plane (bidimensional) matrices, the determinant is defined only for square matrices. So
we have to expect for analogous restrictions on the format of multidimensional matrices
in order to define their hyperdeterminant. We consider first the case of boundary format,
that comes in a natural way, then we generalize the hyperdeterminant to a large class of
matrices.
Let Vi for i = 0, . . . , p be a complex vector space of dimension ki + 1. We assume k0 =
maxi ki. It is not necessary to assume k0 ≥ k1 ≥ . . . ≥ kp (see remark 9.10).
We remark that a multidimensional matrix A ∈ V0 ⊗ . . . ⊗ Vp can be regarded as a map
V ∨0 → V1 ⊗ · · · ⊗ Vp, hence taken the dual map V ∨1 ⊗ . . .⊗ V ∨p → V0 (that we call also A),
we can give the following definition:

9.1 Definition. A multidimensional matrix A is called degenerate if there are vi ∈ V ∗i ,
vi 6= 0 for i = 1, . . . , p such that A(v1 ⊗ . . .⊗ vp) = 0.

Such a solution v1 ⊗ . . .⊗ vp is called a nontrivial solution.
If p = 1 nondegenerate matrices are exactly the matrices of maximal rank.
The following theorem, even if in a special case, gives the flavour of the utility of hyper-
determinants.

9.2 Theorem. (Cayley) Let A be a 3 × 2 × 2 matrix and let A00, A01, A10, A11 be the
3× 3 submatrices obtained by  a000 a001 a010 a011

a100 a101 a110 a111

a200 a201 a210 a211
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deleting respectively the first column (00), the second (01), the third (10) and the fourth
one (11). The multilinear system A(x ⊗ y) = 0 has a nontrivial solution if and only if
detA01 detA10 − detA00 detA11 = 0

Proof. We may assume that the 3×4 matrix in the statement has maximal rank, otherwise
one equation in the system is a combination of the other two and it is easy to check that
a 2× 2× 2 system has always nontrivial solutions.
Any solution (x0y0, x0y1, x1y0, x1y1) of the system is proportional to

(detA00,−detA01,detA10,−detA11)

Also a solution (x0y0, x0y1, x1y0, x1y1) = (z0, z1, z2, z3) can be thought as a point in the
quadric P1 × P1 with equation z0z3 − z1z2 = 0. Hence the result follows.

9.3 Definition. The expression detA01 detA10− detA00 detA11 is called the hyperdeter-
minant of the 3× 2× 2 multidimensional matrix A and we denote it as Det(A) (note the
capital letter!).

9.4 Lemma. If k0 <
∑p

i=1 ki then all matrices in V0 ⊗ . . .⊗ Vp are degenerate.

Proof. The kernel of the map induced by A V ∨1 ⊗ . . . ⊗ V ∨p → V0 has codimension ≤
k0 + 1 <

∑p
i=1 ki + 1. Hence P (KerA) ⊂ P (V1 ⊗ . . .⊗ Vp) meets the Segre variety.

9.1 Exercise. Let vi ∈ V ∨i nonzero elements for i = 1, . . . , p. Then {A ∈ V0 ⊗ . . . ⊗
Vp|A(v1 ⊗ . . .⊗ vp) = 0} is a linear space of codimension k0 + 1.

9.5 Theorem. If k0 ≥
∑p

i=1 ki the degenerate matrices fill an irreducible variety of codi-
mension k0 −

∑p
i=1 ki + 1.

Proof. Consider the incidence variety

Z = {(A, ([v1], . . . , [vp]) ∈ (V0 ⊗ . . . Vp)× [P(V1)× . . .× P(Vp)] |A(v1 ⊗ . . .⊗ vp) = 0}

By the previous exercise Z is a vector bundle over P(V1) × . . . × P(Vp), and dimZ =
dimV0 ⊗ . . . ⊗ Vp − (k0 −

∑p
i=1 ki + 1). Hence Z is irreducible and its projection over

V0 ⊗ . . . Vp is D which is still irreducible. Moreover the generic fiber of the projection
Z → D is 0-dimensional (consider a linear space cutting in one point the Segre variety).
It follows the result.

9.6 Definition. If k0 =
∑p

i=1 ki the matrices A ∈ V0 ⊗ . . . ⊗ Vp are called of boundary
format. It follows from the previous theorem that boundary format degenerate matrices fill
a irreducible hypersurface.

9.2 Hyperdeterminants in the boundary format case

Let A ∈ V0 ⊗ . . . ⊗ Vp be of boundary format and let mj =
∑j−1

i=1 ki with the convention
m1 = 0.
We remark that the definition of mi depends on the order we have chosen among the kj ’s
(see remark 9.10).
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9.2 Exercise. With the above notations the vector spaces V ∨0 ⊗Sm1V1⊗ . . .⊗SmpVp and

Sm1+1V1 ⊗ . . .⊗ Smp+1Vp have the same dimension N = (k0+1)!
k1!...kr!

.

9.7 Theorem. (and definition of ∂A). Let k0 =
∑p

i=1 ki. Then the hypersurface of

degenerate matrices has degree N = (k0+1)!
k1!...kr!

and its equation is given by the determinant
of the natural morphism

∂A : V ∨0 ⊗ Sm1V1 ⊗ . . .⊗ SmpVp−→Sm1+1V1 ⊗ . . .⊗ Smp+1Vp

Proof. If A is degenerate then we get A(v1 ⊗ . . . ⊗ vp) = 0 for some vi ∈ V ∗i , vi 6= 0 for

i = 1, . . . , p. Then (∂A)t
(
v⊗m1+1

1 ⊗ . . .⊗ v⊗mp+1
p

)
= 0.

Conversely if A is nondegenerate we get a surjective natural map of vector bundles over
X = P(V2)× . . .× P(Vp)

V ∨0 ⊗OX
φA−→V1 ⊗OX(1, . . . , 1).

Indeed, by our definition, φA is surjective if and only if A is nondegenerate.
We construct a vector bundle S over P(V2) × . . . × P(Vp) whose dual S∗ is the kernel of
φA so that we have the exact sequence

0−→S∗−→V ∨0 ⊗O−→V1 ⊗O(1, . . . , 1)−→0. (9.1)

After tensoring by O(m2, . . . ,mp) and taking cohomology we get

H0(S∗(m2,m3, . . . ,mp))−→V ∨0 ⊗ Sm1V1 ⊗ . . .⊗ SmpVp
∂A−→Sm1+1V1 ⊗ . . .⊗ Smp+1Vp

and we need to prove
H0(S∗(m2,m3, . . . ,mp)) = 0. (9.2)

Let d = dim (P(V2)× . . .× P(Vp)) =
∑p

i=2 ki = mp+1 − k1.
Since det(S∗) = O(−k1 − 1, . . . ,−k1 − 1) and rank S∗ = d from remark 5.11 it follows
that

S∗(m2,m3, . . . ,mp) ' ∧d−1S(−1,−k1 − 1 +m3, . . . ,−k1 − 1 +mp) (9.3)

Hence, by taking the (d− 1)-th wedge power of the dual of the sequence (9.1), and using
Künneth formula to calculate the cohomology as in [GKZ1], the result follows.

9.8 Definition. The hyperdeterminant of A ∈ V0 ⊗ . . . ⊗ Vp is the usual determinant of
∂A, that is

Det(A) := det∂A (9.4)

where ∂A = H0(φA) and φA : V ∨0 ⊗ OX
φA−→V1 ⊗ OX(1, . . . , 1) is the sheaf morphism

associated to A. In particular

degDet =
(k0 + 1)!

k1! . . . kr!

This is theorem 3.3 of chapter 14 of [GKZ]. Now, applying remark 5.11, we have a
GL(V0)× . . .×GL(Vp)-equivariant function

Det : V0 ⊗ . . .⊗ Vp →
p⊗
i=0

(detVi)
N

ki+1

A 7→ det(∂A)
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9.9 Corollary. Let A ∈ V0⊗ . . .⊗Vp of boundary format. A is nondegenerate if and only
if Det(A) 6= 0

9.10 Remark. Any permutation of the p numbers k1, . . . , kp gives different mi’s and
hence a different map ∂A. As noticed by Gelfand, Kapranov and Zelevinsky, in all cases
the determinant of ∂A is the same by theorem 9.7.

9.11 Example. The 3× 2× 2 case. In this case the morphism V ∗0 ⊗ V1 → S2V1 ⊗ V2 is
represented by a 6× 6 matrix, which, with the obvious notations, is the following

a000 a010 a001 a011

a000 a001 a010 a011

a100 a110 a101 a111

a100 a101 a110 a111

a200 a210 a201 a211

a200 a201 a210 a211


The hyperdeterminant is the determinant of this matrix. This determinant is symmetric
exchanging the second and the third index (this is not trivial from the above matrix!).

9.12 Example. In the case 4 × 3 × 2 the hyperderminant can be obtained as the usual
determinant of one of the following two maps

V ∗0 ⊗ V1 → S2V1 ⊗ V2

V ∗0 ⊗ S2V2 → V1 ⊗ S3V2

Alternative proof that the degree of the hypersurface of degenerate matrices
is N = (k0+1)!

k1!...kp! . We know that A is degenerate iff the corresponding P(V0)∨ meets the

Segre variety. Hence the condition is given by a polynomial P (x1, . . . , xm) in the variables
xi ∈ P(∧k0+1V1 ⊗ . . . ⊗ Vp) of degree equal to the degree of the Segre variety which is
k0!

k1!...kp! . Since xi have degree k0 + 1
in terms of the coefficients of A, the result follows.

A case where this technique simplifies a lot the formulas is the 3 × 2 × 2 case. In this
case P(V1)× P(V2) is a quadric surface and P(V0)∗ is a point in the P(V1 ⊗ V2) where the
quadric is embedded. Hence consider the following 3× 4 matrix a000 a010 a001 a011

a100 a110 a101 a111

a200 a210 a201 a211


Call p00 the determinant obtained by deleting the first column, p10 the determinant
obtained by deleting the second column, and so on. The coordinates of P(V0)∗ are
(p00,−p10, p01,−p11). Then the hyperdeterminant is obtained by the formula

DetA = p00p11 − p01p10

Let A = (ai0,...,ip) a matrix of format (k0 + 1)× · · · × (kp + 1) and B = (bj0,...,jq) of format
(l0 + 1) × · · · × (lq + 1), if kp = l0 it is defined (see [GKZ]) the convolution (or product)
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A ∗B of A and B as the (p+ q)-dimensional matrix C of format (k0 + 1)× · · · × (kp−1 +
1)× (l1 + 1)× · · · × (lq + 1) with entries

ci0,...,ip−1,j1,...,jq =

kp∑
h=0

ai0,...,ip−1,hbh,j1,...,jq .

Similarly, we can define the convolution A∗r,sB with respect to a pair of indices r, s such
that kr = ls.

9.13 Theorem. If A ∈ V0 ⊗ · · · ⊗ Vp and B ∈W0 ⊗ · · · ⊗Wq are nondegenerate boundary
format matrices with dimVi = ki + 1, dimWj = lj + 1 and W∨0 ' Vp then A ∗ B is also
nondegenerate and

Det(A ∗B) = (DetA)
( l0
l1,...,lq

)
(DetB)

( k0+1
k1,...,kp−1,kp+1) (9.5)

We remark that equation (9.5) generalizes the Binet-Cauchy theorem for determinant of
usual square matrices.

Proof. [DO]

9.3 Exercise. From (Definition 9.8) the degree of the hyperdeterminant of a boundary
format (k0 + 1)× · · · × (kp + 1) matrix A is given by the multinomial coefficient:

NA =

(
k0 + 1

k1, . . . , kp

)
Thus, (9.5) can be rewritten as

Det(A ∗B) = [(DetA)NB (DetB)NA ]
1

l0+1

9.14 Remark. The same result of the above theorem works for the convolution with respect
to the pair of indices (j, 0) with j varying in {1, . . . p}. Indeed the condition W∨0 ' Vj
ensure that A∗j,0 is again of boundary format and we can arrange the indices as in the
proof because for any permutation σ we have Det(A) = Det(σA).

9.15 Corollary. If A and B are boundary format matrices then

A and B are nondegenerate ⇐⇒ A ∗0,j B are nondegenerate

The implication ⇐= of the previous corollary is true without the assumption of boundary
format, see proposition 1.9 of [GKZ].

9.16 Remark. Theorem 9.13 and the implication =⇒ of the corollary 9.15 work only for
boundary format matrices. Indeed, if, for instance, A and B are 2× 2× 2 matrices with

aijk = 0 for all (i, j, k) /∈ {(0, 0, 0), (1, 1, 1)} and

bkrs = 0 for all (k, r, s) /∈ {(0, 0, 1), (1, 1, 0)}

then A and B are nondegenerate since, applying Cayley formula (see [Cay] pag.89 or
[GKZ] pag.448), their hyperdeterminants are respectively:

Det(A) = a2
000a

2
111 and Det(B) = b2001b

2
110

but the convolution A ∗ B is degenerate. In this case, by using Schläfli’s method of com-
puting hyperdeterminant ([GKZ]), it easy to find that Det(A ∗ B) corresponds to the dis-
criminant of the polynomial F (x0, x1) = a2

000a
2
111b

2
001b

2
110x

2
0x

2
1 which obviously vanishes.
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9.3 The dual variety and hyperdeterminants in the general
case

We want to mention how the hyperdeterminant can be generalized to cases not of boundary
format (see [GKZ]. The basic notion is that of dual variety. Let X ⊂ Pn be a variety. A
hyperplane H ∈ Pn∗ is said to be tangent to X if there is a smooth point x ∈ X such that
TxX ⊂ H. The dual variety X∨ is defined to be the Zariski closure of the set of tangent
hyperplanes.

9.4 Exercise. The dual variety of the rational normal curve C ⊂ P(SdU) is a hypersurface
in P(SdU) which is the equation of the discriminant, that is f ∈ C∨ iff f has a multiple
root. The degree of C∨ is 2(d− 1).

9.17 Example. The previous exercise can be generalized to the higher dimensional case.
The dual of the Veronese variety V ⊂ P(SdCn+1) is the discriminant hypersurface in
P(SdCn+1) which contains the singular hypersurfaces of degree d in P(Cn+1). Its degree is
(n+ 1)(d− 1)n.

9.18 Example. Let k0 = maxi=0,...,p ki. Then the dual variety of the Segre variety P(V0)×
. . .× P(Vp) is a hypersurface if and only if k0 ≤

∑p
i=1 ki ([GKZ]). We underline that the

boundary format corresponds to put an equality in the above inequality, which justifies its
name.

9.19 Definition. Let k0 ≤
∑p

i=1 ki. Then the equation of the hypersurface

(P(V0)× . . .× P(Vp))
∨

defines (up to a constant) the hyperdeterminant of A ∈ Ck0 × . . .× Ckp.

To show that the previous definition fits with the Definition 9.8 we have to check, according
to the Corollary 9.9 that in the boundary format case the dual variety coincides with the
variety of degenerate matrices. This follows from the following

9.20 Theorem. Let k0 ≥
∑p

i=1 ki.
(i) The dual variety (P(V0)× . . .× P(Vp))

∨ coincides with the variety of degenerate ma-
trices in P(V ∗0 ⊗ . . .⊗ V ∗p ).
(ii) In particular the dual variety has codimension k0 −

∑p
i=1 ki + 1.

(iii) deg (P(V0)× . . .× P(Vp))
∨ =

(
k0+1
k1...kp

)
Proof. We can identify (up to scalar multiples) φ ∈ P(V ∗0 ⊗ . . . ⊗ V ∗p ) with a hyperplane

in P(V0⊗ . . .⊗Vp) and with φ : V ∗1 ⊗ . . .⊗V ∗p → V0. So φ ∈
(
Pk0 × . . .× Pkp

)∨
if and only

if there exist nonzero x̃i ∈ V ∗i for i = 0, . . . , p such that φ contains the projective space
generated by P(V ∗0 ) × {x̃1} × . . . × {x̃p} and {x̃1} × . . . × {x̂i} × . . . × {x̃p} × P(V ∗i ) for
i = 1, . . . , p. This is equivalent to the existence of nonzero x̃i ∈ V ∗i for i = 0, . . . , p such
that
(a) φ(x̃1 ⊗ . . .⊗ x̃p)(x0) = 0 ∀x0 ∈ V ∗0
(b) φ(x̃1 ⊗ . . .⊗ xi ⊗ . . .⊗ x̃p)(x̃0) = 0 ∀xi ∈ V ∗i
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Condition (a) is equivalent to nondegeneracy of φ. Now with our assumption condition
(a) implies condition (b). In fact denote, for a fixed φ

Hx̃1,...,x̃p = {x0 ∈ V ∗0 |φ(x̃1 ⊗ . . .⊗ x̃p)(x0) = 0}

Hx̃1,...,x̂i,...,x̃p = {x0 ∈ V0|φ(x̃1 ⊗ . . .⊗ xi ⊗ . . . x̃p)(x0) = 0 ∀xi ∈ V ∗i }

Hx̃1,...,x̃p has codimension 1 for a general φ and coincides with V ∗0 if φ satisfies condition
(a).
Hx̃1,...,x̂i,...,x̃p = ∩xi∈ViHx̃1,...,xi,...,x̃p has codimension ≤ ki + 1 for a general φ and codimen-
sion ≤ ki if φ satisfies condition (a). Hence if φ satisfies condition (a) the intersection of
Hx̃1,...,x̂i,...,x̃p for i = 1, . . . , p contains a nonzero element and this means that φ satisfies
condition (b).
We have proved (i) and (ii).
(iii) (and (ii)) follow also from Proposition 6.2.

For the convenience of the reader we state the following theorem which is a straightforward
generalization of Theorem 6.3 and contains Theorem 9.20 (i) and Corollary 9.9.

9.21 Theorem. Let A ∈ Hom(V1 ⊗ . . . ⊗ Vp, V0) and let k0 ≥
∑p

i=1 ki. The following
conditions are equivalent
(i) A is degenerate
(ii) A ∈ (P(V0)× . . .× P(Vp))

∨

(iii) P(V0)∨ ∩ P(V1)× . . .× P(Vp) 6= ∅ (where the embedding of PP (V0) is induced by A )
(iv) V ∨0 ⊗OX

φA−→V1 ⊗OX(1, . . . , 1) is surjective.

In [GKZ] and in [WZ] a wellposed definition of hyperdeterminant was found, not depending
to any constant.
The hyperdeterminant of a 2 × 2 × 2 matrix (NOT of boundary format!) has degree 4.
Its geometrical interpretation is the following. Let A be a nonzero 2× 2× 2 matrix. You
have an exact sequence on P1

0→ O(−1)2 A−→O2 → IZ → 0

where Z is a scheme . Then DetA 6= 0 if and only if Z is a reduced scheme of length 2
(that is consists of two distint points, Schläfli).

9.22 Remark. The given definition of hyperdeterminant can be generalized to other cases
where the codimension of the degenerate matrices is bigger than one, these cases are not
covered in [GKZ]. If k0, . . . , kp are nonnegative integers satisfying k0 =

∑p
i=1 ki then we

denote again mj =
∑j−1

i=1 ki with the convention m1 = 0.
Assume we have vector spaces V0, . . . , Vp and a positive integer q such that dimV0 =
q(k0 + 1),dimV1 = q(k1 + 1) and dimVi = (ki+ 1) for i = 2, . . . , p. Then the vector spaces
V0 ⊗ Sm1V1 ⊗ . . . ⊗ SmpVp and Sm1+1V1 ⊗ . . . ⊗ Smp+1Vp still have the same dimension.
In this case degenerate matrices form a subvariety of codimension bigger than 1.
The case q = p = 2 has been explored in [CO] leading to the proof that the moduli space of
instanton bundles on P3 is affine.
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9.5 Exercise. Let A a 2 × 2 × 4 matrix. In this format there is no good notion of
hyperdeterminant.
(i) Prove that if it is degenerate then the 2× 2× 3 minors vanish.
(ii) Find a nondegenerate A such that all the 2× 2× 3 minors vanish.
(iii) Define I(A) to be the det of the 4× 4 matrix obtained by A by stacking the two faces
(do not worry about the way in doing it!). Prove that A is degenerate if and only if all the
2× 2× 3 minors vanish and I(A) = 0.

9.4 Multidimensional matrices and bundles

A multidimensional matrix is an element A ∈ V0 ⊗ . . .⊗ Vp where Vi is a complex vector
space of dimension ki + 1 for i = 0, . . . , p. We will say that the type of A is k0 × . . .× kp.
We want to consider the action of SL(V0)× . . .×SL(Vp) on P(V0⊗ . . .⊗Vp). If p = 1 there
are finitely many orbits determined by the rank. In particular all bidimensional matrices
of maximal rank are equivalent under the action of SL(V0)× SL(V1). It is immediate to
check that by dimensional reasons this property cannot hold in general for p ≥ 2. We will
restrict to the boundary format case, that is

k0 =

p∑
i=1

ki

We denote by Det A the hyperdeterminant of A. Let e
(j)
0 , . . . , e

(j)
kj

be a basis in Vj so that
every A ∈ V0 ⊗ . . .⊗ Vp has a coordinate form

A =
∑

ai0,...,ipe
(0)
i0
⊗ . . .⊗ e(p)

ip

Let x
(j)
0 , . . . , x

(j)
kj

be the coordinates in Vj . Then A has the following different descriptions:

1) A multilinear form ∑
(i0,...,ip)

ai0,...,ipx
(0)
i0
⊗ . . .⊗ x(p)

ip

2) An ordinary matrix MA = (mi1i0) of size (k1 +1)×(k0 +1) whose entries are multilinear
forms

mi1i0 =
∑

(i2,...,ip)

ai0,...,ipx
(0)
i2
⊗ . . .⊗ x(p)

ip

3) A sheaf morphism fA on the product X = Pk2 × . . .× Pkp

Ok0+1
X

fA−→OX(1, . . . , 1)k1+1

We have seen in the case p = 2 the following

9.23 Theorem. The following properties are equivalent
i) Det A 6= 0.
ii) the matrix MA has constant rank k1 + 1 on X = Pk2 × . . .× Pkp.
iii) the morphism fA is surjective so that S∗A = KerfA is a vector bundle of rank k0 − k1.
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9.24 Theorem. All nondegenerate matrices of type 2× k× (k+ 1) are GL(2)×GL(k)×
GL(k + 1) equivalent.

Proof. Let A, A′ two such matrices. They define two exact sequences on P1

0→ O(−k)−→Ok+1 A−→O(1)k → 0

0→ O(−k)−→Ok+1 A′−→O(1)k → 0

We want to show that there is a commutative diagram

0 → O(−k) −→ Ok+1 A−→ O(1)k → 0y1 ↘
yf

0 → O(−k) −→ Ok+1 A′−→ O(1)k → 0

In order to show the existence of f we apply the functorHom(−,Ok+1) to the first row. We
getHom(Ok+1,Ok+1)

g−→Hom(O(−k),Ok+1)→ Ext1(O(1)k,Ok+1) ' H1(O(−1)k(k+1)) =
0. Hence g is surjective and f exists. Now it is straightforward to complete the diagram
with a morphism φ : O(1)k → O(1)k, which is a isomorphism by the snake lemma.

Let (x0, . . . , x1) be homogeneous coordinates on P(V ). We set

Ik(x0, x1) :=

 x0 x1

. . .
. . .

x0 x1

 and Ĩk(x0, x1) :=


x1

x0 x1

. . .
. . .

x0 x1

x0

 .

A reformulation of the previous theorem is the following

9.25 Proposition. Every surjective morphism of vector bundles on P1

Ok+1
P1 → OP1(1)k

is represented, in a suitable system of coordinates (x0, x1), by the matrix Ik.

9.26 Corollary. For k = 2 any Steiner bundle is Schwarzenberger.

9.5 Multidimensional Matrices of boundary Format and Ge-
ometric Invariant Theory

It is well known that all one dimensional subgroups of the complex Lie group SL(2) either
are conjugated to the maximal torus consisting of diagonal matrices (which is isomorphic

to C∗) or are conjugated to the subgroup C '
{[

1 b
0 1

]
|b ∈ C

}
.
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9.27 Definition. A p + 1-dimensional matrix of boundary format A ∈ V0 ⊗ . . . ⊗ Vp is
called triangulable if one of the following equivalent conditions holds:
i) there exist bases in Vj such that ai0,...,ip = 0 for i0 >

∑p
t=1 it

ii) there exist a vector space U of dimension 2, a subgroup C∗ ⊂ SL(U) and isomorphisms
Vj ' SkjU such that if V0 ⊗ . . . ⊗ Vp = ⊕n∈ZWn is the decomposition into direct sum of
eigenspaces of the induced representation, we have A ∈ ⊕n≥0Wn

Proof of the equivalence between i) and ii)

Let x, y be a basis of U such that t ∈ C∗ acts on x and y as tx and t−1y. Set e
(j)
k :=

xkykj−k
(kj
k

)
∈ SkjU for j > 0 and e

(0)
k := xk0−kyk

(
k0
k

)
∈ Sk0U so that e

(0)
i0
⊗ . . .⊗ e(p)

ip
is a

basis of Sk0U⊗. . .⊗SkpU which diagonalizes the action of C∗. The weight of e
(0)
i0
⊗. . .⊗e(p)

ip

is 2 (
∑p

t=1 it − i0), hence ii) implies i). The converse is trivial.

9.28 Definition. A p + 1-dimensional matrix of boundary format A ∈ V0 ⊗ . . . ⊗ Vp is
called diagonalizable if one of the following equivalent conditions holds
i) there exist bases in Vj such that ai0,...,ip = 0 for i0 6=

∑p
t=1 it

ii) there exist a vector space U of dimension 2, a subgroup C∗ ⊂ SL(U) and isomorphisms
Vj ' SkjU such that A is a fixed point of the induced action of C∗.

9.29 Definition. A p+ 1-dimensional matrix of boundary format A ∈ V0⊗ . . .⊗Vp is an
identity if one of the following equivalent conditions holds
i) there exist bases in Vj such that

ai0,...,ip =

{
0 for i0 6=

∑p
t=1 it

1 for i0 =
∑p

t=1 it

ii) there exist a vector space U of dimension 2 and isomorphisms Vj ' SkjU such that A
belongs to the unique one dimensional SL(U)-invariant subspace of Sk0U ⊗ Sk1U ⊗ . . .⊗
SkpU

The equivalence between i) and ii) follows easily from the following remark: the matrix A
satisfies the condition ii) if and only if it corresponds to the natural multiplication map
Sk1U ⊗ . . .⊗ SkpU → Sk0U (after a suitable isomorphism U ' U∗ has been fixed).
In the case p = 2 the identity matrices correspond exactly to the Schwarzenberger bundles.
The definitions of triangulable, diagonalizable and identity apply to elements of P(V0⊗. . .⊗
Vp) as well. In particular all identity matrices fill a distinguished orbit in P(V0⊗ . . .⊗Vp).
The function Det is SL(V0)× . . .×SL(Vp)-invariant, in particular if Det A 6= 0 then A is
semistable for the action of SL(V0)×. . .×SL(Vp). We denote by Stab (A) ⊂ SL(V0)×. . .×
SL(Vp) the stabilizer subgroup of A and by Stab (A)0 its connected component containing
the identity. The main results are the following.

9.30 Theorem. ([AO]) Let A ∈ P(V0⊗ . . .⊗Vp) of boundary format such that Det A 6= 0.
Then

A is triangulable ⇐⇒ A is not stable for the action of SL(V0)× . . .× SL(Vp)

9.31 Theorem. ([AO]) Let A ∈ P(V0⊗ . . .⊗Vp) be of boundary format such that Det A 6=
0. Then

A is diagonalizable ⇐⇒ Stab(A) contains a subgroup isomorphic to C∗
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***add picture
The proof of the two above theorems relies on the Hilbert-Mumford criterion. The proof
of the following theorem needs more geometry.

9.32 Theorem. ([AO] for p = 2, [D] for p ≥ 3) Let A ∈ P(V0⊗V1⊗ . . .⊗Vp) of boundary
format such that Det A 6= 0. Then there exists a 2-dimensional vector space U such
that SL(U) acts over Vi ' SkiU and according to this action on V0 ⊗ . . . ⊗ Vp we have
Stab (A)0 ⊂ SL(U). Moreover the following cases are possible

Stab (A)0 '


0 (trivial subgroup)
C
C∗

SL(2) (this case occurs if and only if A is an identity)

9.33 Remark. When A is an identity then Stab (A) ' SL(2).

9.34 Theorem. ([AO99] theorem 6.14) Let E be a Steiner bundle of rank n on Pn. Let
Sym(E) = {g ∈ SL(n + 1)|g∗E ' E} and let Sym0(E) be its connected component
containing the identity. Then Sym0(E) is always contained in SL(2) and the equality
holds if and only if E is a Schwarzenberger bundle.
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Chapter 10

Appendix

10.1 Grassmannians and Segre varieties

Let V be a vector space of dimension n+ 1 and consider v ∈ V , v 6= 0. Define

φi : ∧i V → ∧i+1V

by
φi(ω) := ω ∧ v

10.1 Lemma. (Koszul complex of a vector). The following sequence is exact

0−→∧0 V = C φ0−→∧1 V
φ1−→∧2 V

φ2−→ . . .
φn−→∧n+1 V−→0

Proof. It is evident that the above sequence is a complex. Choose a basis of V given
by e1, . . . , en, en+1 = v. Choose ω ∈ ∧kV such that φk(ω) = ω ∧ v = 0. If ω =∑

i1<...<ik
ai1...ikei1 ∧ . . . ∧ eik then each nonzero coefficient ai1...ik has ik = n + 1. Hence

ψ =
∑

i1<...<ik−1
ai1...ikei1 ∧ . . . ∧ eik−1

satisfies φk−1(ψ) = ψ ∧ v = ω.

10.2 Remark. The theorem 10.1 admits the following generalization [Serre, Algèbre lo-
cale, multiplicités, LNM 11, Springer]. Let E be a vector bundle of rank n over X and
consider s ∈ H0(X,E) such that Z = {x|s(x) = 0} has pure codimension n. Define
φi : ∧iE → ∧i+1E by φi(ω) = ω∧s and the dual φti : ∧i+1E∗ → ∧iE∗. Then the following
sequence is exact

0−→∧n E∗
φtn−1−→ ∧n−1 E∗

φtn−2−→ . . .
φt1−→E∗

φt0−→OX−→OZ−→0

and it is called the Koszul sequence associated to s.

The Grassmannian
Let Pn = P(V ). Grassmannians parametrize the set of linear subspaces of dimension k in
Pn. The best way to give to this set the structure of an algebraic variety is the following
definition.

10.3 Definition. . Gr(k, n) = Gr(Pk,Pn) is defined as the subset of P(∧k+1V ) consisting
of decomposable tensors.
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10.4 Theorem. Gr(k,n) is a projective variety of dimension (k + 1)(n− k).

In order to prove the theorem we have the following

10.5 Lemma.

i) If ω ∈ ∧k+1V then dim{v ∈ V |ω ∧ v = 0} ≤ k + 1.

ii) ω ∈ ∧k+1V is decomposable if and only if dim{v ∈ V |ω ∧ v = 0} = k + 1.

Proof of lemma 10.5. By the theorem 10.1

ω ∧ v = 0 ⇔ ∃ψ such that ω = ψ ∧ v

Hence if v1, . . . , vj are independent elements in {v ∈ V |ω ∧ v = 0} it follows that

ω = ψ′ ∧ v1 ∧ . . . ∧ vj

(choose a basis containing v1, . . . , vj !) and the result is obvious.

Proof of the theorem 10.4 Consider the morphism

φ(ω) : V → ∧k+2V
v 7→ ω ∧ v

By the lemma ω ∈ Gr(k, n) if and only if rk φ(ω) = n− k. rk φ(ω) is always ≥ n− k by
the lemma 10.5 i), so the last condition is satisfied if and only if rk φ(ω) ≤ n − k. The
map

∧k+1V → Hom(V,∧k+2V )
ω 7→ φ(ω)

is linear, hence the entries of the matrix φ(ω) are homogeneous coordinates on P(∧k+1V )
and Gr(k, n) is defined by the vanishing of the (n − k + 1) × (n − k + 1) minors of this
matrix.

The map i : Gr(k, n)→ P(∧k+1V ) is called the Plücker embedding. The equations that we
have found define the Grassmannian as scheme but they do not generate the homogeneous
ideal of G = Gr(k, n). The ideal IG,P is generated by quadrics that are called Plücker
quadrics (see [Harris]).

10.1 Exercise. Prove that i is a closed immersion

Hint: writing down coordinates you can show injectivity.
In conclusion we have a biunivoc correspondence between points in Gr(k, n) and linear
subspaces Pk ⊂ Pn. The following construction shows that this correspondence is much
more rich than a set correspondence.
Define the incidence variety U ⊂ Gr(k, n) × Pn given by {(g, x)|x ∈ g} (really U is the
projective bundle P(U) where U is the universal bundle on the Grassmannian). U →
Gr(k, n) satisfies the following universal property: for every subscheme F ⊂ S × Pn such
that the projection F → S is flat (F with this property is called a flat family) and Fs is a
linear Pk for every s ∈ S then there exists a unique morphism φ : S → Gr(k, n) such that
φ∗U = F . This property says that the Grassmannians are Hilbert schemes (in fact they are
the simplest Hilbert schemes). For an introduction to Hilbert schemes see ([Eis-Har]). It
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is interesting to remark that in order to construct the Hilbert schemes, the Grassmannians
are needed as first step. We will see in connections with vector bundles other examples of
the ubiquity of Grassmannians in modern geometry.
When k = 0 or n − 1, Gr(k, n) is isomorphic to the projective space Pn. The simplest
Grassmannian which is not a projective space is Gr(1, 3).

10.2 Exercise. Let pij =

∣∣∣∣ xi xj
yi yj

∣∣∣∣ for 0 ≤ i < j ≤ 3 be Plücker coordinates in the

embedding Gr(1, 3)→ P5. Prove that Gr(1, 3) is given by the smooth quadric with equation

p01p23 − p02p13 + p03p12 = 0

10.3 Exercise. Gr(k, n) is a rational variety of dimension (k + 1)(n− k)

10.4 Exercise. Gr(k, n) is a homogeneous variety, in particular it is smooth.

A more advanced property is that Pic(Gr) = Z. This is equivalent to say that in the
Plücker embedding every effective divisor on Gr is cutted as a scheme by a hypersurface
in P(∧k+1V ) . This is a famous result proved by Severi in 1915, which is the core of the
definition of the Chow variety, which is one of the first examples of moduli spaces. The
Plücker embedding corresponds to the embedding given by the complete linear system
H0(O(1)).
In the case k = 1 we have the Grassmannian of lines.

10.5 Exercise. Show that a Grassmannian of lines in its Plücker embedding can be seen
as the (projective) variety of skew-symmetric matrices of rank 2. Its equation are given by
4× 4 pfaffians, that are quadrics in the Plücker embedding.

10.6 Exercise. Show that the secant variety of Gr(P1,Pn) can be interpreted as the variety
of skew-symmetric matrices of rank ≤ 4 and its dimension is 4n − 7. Compare this with
the general variety of dimension 2(n − 1) that has secant variety of dimension 4n − 3.
Deduce that Gr(P1,Pn) projects smoothly in P4n−7.

Kunneth formula for sheaves Let X, Y be projective varieties and let p and q be the
two projections of the product X × Y onto the two factors. The formula says that for
every coherent sheaves F over X and G over Y we have

H i(X × Y, p∗F ⊗ q∗G) = ⊕ij=1H
j(X,F )⊗H i−j(Y,G)

Hirzebruch ([Hir]) attributes this formula to Grothendieck.
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The Segre variety
Let Vi be complex vector spaces of dimension ki + 1 for i = 0, . . . , p The Segre variety
is the product P(V0) × . . . × P(Vp). The Segre embedding describes this variety in the
space of tensors in a manner similar to Grassmannians. In fact we have a natural closed
immersion

P(V0)× . . .× P(Vp)
i−→P(V0 ⊗ . . .⊗ Vp)

given by (v0, . . . , vp) 7→ v0 ⊗ . . . ⊗ vp which describes the image of i as the set of decom-
posable tensors.
When p = 1 the tensor space P(V0 ⊗ V1) can be interpreted as P(Hom(V ∗0 , V1)) and in
this case the Segre variety corresponds to morphisms of rank ≤ 1. Its equations in this
case are given by 2× 2 minors. It is known that in general the ideal of the Segre variety
is generated by quadrics.
The Hilbert polynomial of the Segre variety in the Segre embedding is

∏p
i=0

(
t+ki
ki

)
. It

follows that the degree of the Segre embedding is the multinomial coefficient
(∑

ki)!∏
(ki!)

)
.

The Picard group of P(V0) × . . . × P(Vp) is isomorphic to Zp+1 and its elements will be
denoted by O(a0, . . . , ap) where ai are integers. The previous embedding corresponds to
the embedding given by the complete linear system H0(O(1, . . . , 1)).

10.2 Vector bundles

A vector bundle over X is unformally a family of vector spaces parametrized by X. X ×
Cr → X is called the trivial bundle of rank r. In general we require that a vector bundle
is locally trivial. More precisely

10.6 Definition. A vector bundle E of rank r over an algebraic variety X is an algebraic
variety E with a surjective morphism

π : E → X

such that there exists an open covering {Uα}α∈I of X satisfying the two properties i) there
exist isomorphisms φα : π−1(Uα)−→Uα × Cr making commutative the diagram

π−1(Uα)
φα−→ Uα × Cryπ yp1

Uα
id−→ Uα

ii) ∀α, β ∈ I the composition (restricted)

(Uα ∩ Uβ)× Cr
φ−1
β−→π−1(Uα ∩ Uβ)

φα−→(Uα ∩ Uβ)× Cr

has the form
φα ◦ φ−1

β (x, v) = (x, gαβ(x)v)

where
gαβ : (Uα ∩ Uβ)→ GL(r)

are algebraic.
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i) means that the fibration is locally trivial and that each fiber π−1(x) is isomorphic to
Cr.
ii) means that the structure group of the bundle is linear.
gαβ are called the transition functions and satisfy the properties

g−1
αβ = gβα (10.1)

gαβ · gβγ = gαγ (10.2)

In equivalent way, given a covering {Uα}α∈I with a set of transition functions gαβ(x)
satisfying (10.1) and (10.2) we can construct a vector bundle E as the quotient of the
disjoint union ∐

α

(Uα × Cr)

by the relation ∼ defined in the following way:

∀(x, v) ∈ Uα × Cr (x′, v′) ∈ Uβ × Cr

we have
(x, v) ∼ (x′, v′) iff x = x′ v = gαβ(x)v′

10.7 Remark. We can say synthetically that ”the transition functions determine the
bundle”.

If gαβ are transition functions for E and hαβ are transition functions for F then(
gαβ

hαβ

)
are transition functions for E ⊕ F

(this can be taken as definition of E ⊕ F )

(g−1
αβ )t are transition functions for E∗ dual bundle

gαβ ⊗ hαβ are transition functions for E ⊗ F

If T : GL(r)→ GL(r′) is any representation we define T (E) to be the bundle with transi-
tion functions T (gαβ). This construction applies in particular to T = ∧k and T = Sk.
If f : X → Y is a map and E is a bundle on Y with transition functions gαβ(y) then f∗E
is the bundle on X with transition functions gαβ(f(x)).
If X is smooth the bundle Ω1

X of 1− forms can be defined as the bundle with transition
functions given by the jacobian matrices obtained by change of local coordinates. The
tangent bundle is TX = (Ω1

X)∗.
A vector bundle of rank 1 is called a line bundle. The set of line bundles has a natural
structure of abelian group isomorphic to H1(X,O∗) with the multiplication given by the
tensor product and the inverse given by the dual bundle.
A section of E is an algebraic map

s : X → E

such that π ◦ s = idX
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10.8 Definition. A vector bundle is called spanned if there are (global) sections s1, . . . , sk
such that ∀x ∈ X the vectors s1(x), . . . , sk(x) span the fiber π−1(x).

To any vector bundle E we can associate a locally free sheaf of OX -modules E defined by

E(U) := {sections of E|U}

Conversely to any locally free sheaf E is associated a vector bundle with fiber Ex '
Ex/MxEx defined as the Spec of the symmetric algebra of E (see [Ha]).
For any coherent sheaf E the fiber Ex ' Ex/MxEx is a vector space whose dimension is
called the rank of E at x.

10.9 Proposition. E is locally free if and only if it has constant rank.

Proof [Ha] A sheaf morphism between bundles E
f−→F induces linear maps Ex

fx−→Fx for
every x ∈ X. It follows from the definition of sheaf morphism that f is injective if and
only if fx is injective for generic x ∈ X. f is called a bundle morphism if it has constant
rank ∀x ∈ X. In particular f is injective and it is a bundle morphism if and only if fx is
injective for any x ∈ X. When we write a exact sequence of sheaves or bundles

0→ E
f−→F → G→ 0

we assume it is a exact sequence of sheaf morphisms. In the sequence above assume E
and F are locally free (bundles). Then f is always injective as sheaf morphism and it is a
bundle morphism if and only if G is locally free. A version of Nakayama lemma states that
a surjective sheaf morphism between bundles is also a bundle morphism, in particular its
kernel is locally free.

10.10 Remark. Let be given a bundle morphism E
f−→F . The ker f is locally free.

10.7 Exercise. Prove that for any vector space V of dimension r there is a canonical
isomorphism ∧kE ' ∧r−kE∗ ⊗ ∧rE. The same isomorphism hold if E is a vector bundle
of rank r.

It is usual to identify a vector bundle E and the associated locally free sheaf E . In
particular the cohomology groups Hq(X,E) are (by definition) the cohomology groups
Hq(X, E). Note that H0(X,E) is the space of global sections of E. In particular a vector
bundle is spanned if and only if the evaluation map

H0(X,E)⊗O → E

is surjective.

10.3 Wedge power of a short exact sequence

Let A, B, C be vector spaces. Suppose we have a exact sequence

0−→A−→B−→C−→0
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Then for any integer k ≥ 1 the following sequences are exact

0−→∧k A−→∧k B−→∧k−1 B ⊗ C−→∧k−2 B ⊗ S2C−→ . . .−→SkC−→0

0−→SkA−→Sk−1A⊗B−→Sk−2A⊗ ∧2B−→ . . .−→∧k B−→∧k C−→0

All the maps are natural. Obviously the second sequence is dual of the first one.

10.8 Exercise. Prove from the above the following combinatorial identities(
a
k

)
=
∑k

j=0(−1)j
(
a+c
k−j
)(
c+j−1
j

)(
a+k−1
k

)
=
∑k

j=0(−1)j
(
a+c+k−j−1

k−j
)(
c
j

)
Remark
There are analogous sequences exchanging symmetric with wedge powers.

94



Bibliography

[AH] J. Alexander, A. Hirschowitz, Polynomial interpolation in several variables, J.
Alg. Geom. 4 (1995), 201-222

[AO99] V. Ancona, G. Ottaviani. Unstable hyperplanes for Steiner bundles
and multidimensional matrices, Advances in Geometry, 1 (2001), 165-192,
math.AG/9910046.

[Ba1] W.Barth, Some properties of stable rank-2 vector bundles on Pn, Math. Ann.226
(1977), 125-150.

[Ba2] W.Barth, Moduli of vector bundles on the projective plane, Inv. Math. 42 (1977),
63-91.

[BB] W. Barth, Th. Bauer, Poncelet theorems, Expo. Math. 14-2 (1996), 125-144.

[Bor] A. Borel, Linear Algebraic Groups, Springer Verlag, GTM 126, New York 1991
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[GKZ1] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Hyperdeterminants, Adv.
in Math. (1992), no. 96, 226–263.

[GH] Griffiths,P., Harris,J., Principles of algebraic geometry, Wiley, New York 1978

[GH1] Ph. Griffiths,J. Harris, On Cayley’s explicit solution to Poncelet’s porism,
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