Harmonic G_2 -structures on almost Abelian Lie groups

Andrés Julián Moreno Ospina

Universidade Estadual de Campinas

FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo

Workshop BRIDGES: Specials geometries and gauge theories

June 21, 2023

On a 7-dimensional Riemannian manifold *M*:

What is the best $\mathrm{G}_2\text{-structure}$ among some class?

- Among the all G_2 -structures, it is the **torsion free** G_2 -structure, since it corresponds with metrics with holonomy in G_2 .
- Depending on the geometry/topology of *M*, the existence of torsion free a G₂-structure is trivial or obstructed.
- Sometimes is convenient to consider a weaker torsion condition. For instance, when *M* is a homogeneous space.

- 1. Review of G_2 -structures G_2 -structures and their torsion Harmonic G_2 -structures Previous results
- 2. Almost Abelian Lie groups The torsion classes on $(\mathfrak{g}_A, \varphi)$ The harmonicity of $(\mathfrak{g}_A, \varphi)$

$\mathrm{G}_2\text{-}\mathsf{structures}$ and their torsion

A G₂-structure on a 7-manifold *M* is given by a differential 3-form φ on *M*, which is pointwise isomorphic to the 3-form

$$arphi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}\in \Lambda^3(\mathbb{R}^7)^*,$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$ and $(\mathbb{R}^7)^* = \langle \{e^1, \dots, e^7\} \rangle$.

$\mathrm{G}_2\text{-}\mathsf{structures}$ and their torsion

A G₂-structure on a 7-manifold M is given by a differential 3-form φ on M, which is pointwise isomorphic to the 3-form

$$arphi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}\in \Lambda^3(\mathbb{R}^7)^*,$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$ and $(\mathbb{R}^7)^* = \langle \{e^1, \ldots, e^7\} \rangle$. For (M^7, φ) , there are an induced Riemannian metric and orientation:

$$6g_{arphi}(u,v)\mathrm{vol}_{arphi}=(u\lrcorner arphi)\wedge(v\lrcorner arphi)\wedge arphi \quad u,v\in X(M).$$

$\mathrm{G}_2\text{-}\mathsf{structures}$ and their torsion

A G₂-structure on a 7-manifold M is given by a differential 3-form φ on M, which is pointwise isomorphic to the 3-form

$$arphi_0=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356}\in \Lambda^3(\mathbb{R}^7)^*,$$

where $e^{ijk} = e^i \wedge e^j \wedge e^k$ and $(\mathbb{R}^7)^* = \langle \{e^1, \dots, e^7\} \rangle$. For (M^7, φ) , there are an induced Riemannian metric and orientation:

$$6g_{\varphi}(u,v)\mathrm{vol}_{arphi}=(u\lrcorner arphi)\wedge(v\lrcorner arphi)\wedge arphi \quad u,v\in X(M).$$

Hence, φ induces also:

• A Riemannian connection ∇_{φ} , a Hodge star operator $*_{\varphi}$, a dual 4-form $*_{\varphi}\varphi$. And (M, φ) is called a G₂-manifold when:

$$abla_arphi arphi = \mathsf{0} \quad (i.e. \quad \operatorname{Hol}(g_arphi) \subseteq \operatorname{G}_2)$$

Fernández and Gray (1982)

 φ is torsion free $\nabla_{\varphi}\varphi = 0$, if and only if, φ is closed $d\varphi = 0$ and coclosed $d * \varphi = 0$.

Fernández and Gray (1982)

 φ is torsion free $\nabla_{\varphi}\varphi = 0$, if and only if, φ is closed $d\varphi = 0$ and coclosed $d * \varphi = 0$.

The *intrinsic torsion* $\nabla \varphi$ is completely encoded by the *full torsion tensor* T:

$$abla_{a}arphi_{bcd} = {\mathcal T}'_{a}(*arphi)_{lbcd} \quad ext{where} \quad {\mathcal T} \in ext{End}({\mathcal T}{\mathcal M})$$

Fernández and Gray (1982)

 φ is torsion free $\nabla_{\varphi}\varphi = 0$, if and only if, φ is closed $d\varphi = 0$ and coclosed $d * \varphi = 0$.

The *intrinsic torsion* $\nabla \varphi$ is completely encoded by the *full torsion tensor* T:

$$abla_{a}arphi_{bcd} = T_{a}^{\prime}(st arphi)_{lbcd}$$
 where $T \in \operatorname{End}(TM)$

According to the decomposition of $\mathcal{W} := \operatorname{End}(\mathcal{T}_p M)$ into G₂-irreducible submodules ([Fernández-Gray, 1982])

$$\mathcal{W} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4.$$

Where

$$\mathcal{W}_1 \oplus \mathcal{W}_3 \simeq \mathsf{sym}(\mathit{T_pM}) = [\mathit{g_p}] \oplus \mathsf{sym}_0(\mathit{T_pM}) \quad \text{and} \quad \mathcal{W}_2 \oplus \mathcal{W}_4 \simeq \mathfrak{so}(\mathit{T_pM}) = \mathfrak{g}_2 \oplus \mathbb{R}^7.$$

T splits into G₂-irreducible components [Karigiannis, 2008]:

$$T = \frac{\tau_0}{4}g - \frac{1}{2}\tau_2 - \frac{1}{4}j(\tau_3) - *(\tau_1 \wedge *\varphi) \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4,$$

where $j(\tau_3)_{ij} = *(e_i \lrcorner \varphi \land e_j \lrcorner \varphi \land \tau_3)$ and $\tau_k \in \Omega^k$ (for k = 0, 1, 2, 3) are called the *torsion* forms, and defined by:

$$d\varphi = au_0 * \varphi + 3 au_1 \wedge \varphi + * au_3$$
 and $d * \varphi = 4 au_1 \wedge * \varphi + au_2 \wedge \varphi$.

T splits into G₂-irreducible components [Karigiannis, 2008]:

$$T = \frac{\tau_0}{4}g - \frac{1}{2}\tau_2 - \frac{1}{4}j(\tau_3) - *(\tau_1 \wedge *\varphi) \in \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4,$$

where $j(\tau_3)_{ij} = *(e_i \lrcorner \varphi \land e_j \lrcorner \varphi \land \tau_3)$ and $\tau_k \in \Omega^k$ (for k = 0, 1, 2, 3) are called the *torsion* forms, and defined by:

$$d\varphi = au_0 * \varphi + 3 au_1 \wedge \varphi + * au_3$$
 and $d * \varphi = 4 au_1 \wedge * \varphi + au_2 \wedge \varphi$.

In total, there are 16-torsion classes, for instance:

- \mathcal{W}_1 is the class of nearly parallel G_2 -structures.
- \mathcal{W}_4 is the class of locally conformal parallel G_2 -structures.
- \mathcal{W}_2 is the class of closed G_2 -structures.
- $\mathcal{W}_1 \oplus \mathcal{W}_3$ is the class of coclosed G_2 -structures.

Harmonic G_2 -structures

For M^7 compact, the *energy* of φ is defined by

$${m E}(arphi) = rac{1}{2}\int_{M} |T_arphi|^2 {
m vol}$$

Harmonic G₂-structures

For M^7 compact, the *energy* of φ is defined by

$$E(\varphi) = rac{1}{2} \int_M |T_{\varphi}|^2 \mathrm{vol}$$

And its first variation is [Grigorian, 2017]:

$$\frac{d}{dt}|_{t=0}E(\varphi_t) = -\int_M \langle \operatorname{div} T_\varphi, V \rangle \mathrm{vol} \quad \text{among} \quad \frac{d}{dt}|_{t=0}\varphi_t = V \lrcorner * \varphi.$$

Harmonic G₂-structures

For M^7 compact, the *energy* of φ is defined by

$$E(\varphi) = rac{1}{2} \int_M |T_{\varphi}|^2 \mathrm{vol}$$

And its first variation is [Grigorian, 2017]:

$$\frac{d}{dt}|_{t=0}E(\varphi_t) = -\int_M \langle \operatorname{div} T_{\varphi}, V \rangle \operatorname{vol} \quad \operatorname{among} \quad \frac{d}{dt}|_{t=0}\varphi_t = V \lrcorner * \varphi.$$

Thus the critical points are

$$\operatorname{Crit}(E) := \{ \varphi \in \Omega^3_+ : \quad \operatorname{div} T_{\varphi} := \operatorname{tr} \nabla T = 0 \},$$

Harmonic G₂-structures

For M^7 compact, the *energy* of φ is defined by

$$\mathsf{E}(arphi) = rac{1}{2} \int_{\mathcal{M}} |T_{arphi}|^2 \mathrm{vol}$$

And its first variation is [Grigorian, 2017]:

$$\frac{d}{dt}|_{t=0}E(\varphi_t) = -\int_M \langle \operatorname{div} T_{\varphi}, V \rangle \operatorname{vol} \quad \operatorname{among} \quad \frac{d}{dt}|_{t=0}\varphi_t = V \lrcorner \ast \varphi.$$

Thus the critical points are

$$\operatorname{Crit}(E) := \{ \varphi \in \Omega^3_+ : \quad \operatorname{div} T_{\varphi} := \operatorname{tr} \nabla T = 0 \},$$

Definition

A G₂-structure φ is called *harmonic* (divergence free) if div T = 0.

- The G₂-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
 - (i) τ_0 is constant, $\tau_1 = 0$ and arbitrary τ_2 and τ_3 .
 - (ii) $\tau_0 = \tau_2 = \tau_3 = 0$ and τ_1 arbitrary.

- The G₂-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
 (i) τ₀ is constant, τ₁ = 0 and arbitrary τ₂ and τ₃.
 (ii) τ₀ = τ₂ = τ₃ = 0 and τ₁ arbitrary.
- Examples of harmonic G₂-structures on $\mathbb{R}^3 \ltimes_{A,B,C} \mathbb{R}^4$ with $A, B, C \in \mathfrak{sl}_4(\mathbb{R})$ such that $\tau_0 \neq 0$ and $\tau_1 \neq 0$ [Garrone 2021].
- Sp(2)-invariant harmonic G₂-structures on S⁷ with the same Riemannian metric [Loubeau-M-Sá Earp-Saavedra, 2022].

- The G₂-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
 (i) τ₀ is constant, τ₁ = 0 and arbitrary τ₂ and τ₃.
 (ii) τ₀ = τ₂ = τ₃ = 0 and τ₁ arbitrary.
- Examples of harmonic G₂-structures on $\mathbb{R}^3 \ltimes_{A,B,C} \mathbb{R}^4$ with $A, B, C \in \mathfrak{sl}_4(\mathbb{R})$ such that $\tau_0 \neq 0$ and $\tau_1 \neq 0$ [Garrone 2021].
- Sp(2)-invariant harmonic G₂-structures on S⁷ with the same Riemannian metric [Loubeau-M-Sá Earp-Saavedra, 2022].
- Spinorial description of the harmonic condition [Niedzialomski, 2020].

- The G₂-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
 (i) τ₀ is constant, τ₁ = 0 and arbitrary τ₂ and τ₃.
 (ii) τ₀ = τ₂ = τ₃ = 0 and τ₁ arbitrary.
- Examples of harmonic G₂-structures on $\mathbb{R}^3 \ltimes_{A,B,C} \mathbb{R}^4$ with $A, B, C \in \mathfrak{sl}_4(\mathbb{R})$ such that $\tau_0 \neq 0$ and $\tau_1 \neq 0$ [Garrone 2021].
- Sp(2)-invariant harmonic G₂-structures on S⁷ with the same Riemannian metric [Loubeau-M-Sá Earp-Saavedra, 2022].
- Spinorial description of the harmonic condition [Niedzialomski, 2020].
- General results on the associated gradient flow, from different perspectives:
 - By unit octonion sections [Grigorian, 2019].
 - Sections of a homogeneous fiber bundle [Loubeau- Sá Earp, 2019].
 - Evolving the G₂-structure φ [Dwivedi-Gianniotis-Karigiannis, 2019]. And recently, evolving the tensor field associated with the *H*-structure [Fadel-Loubeau-M.-Sá Earp, 2022].

The 7-dimensional Lie algebra $\mathfrak{g} = \mathfrak{h} \rtimes_A \mathbb{R} e_7$ is called *almost Abelian* if it has a codimension one Abelian ideal \mathfrak{h} .

The 7-dimensional Lie algebra $\mathfrak{g} = \mathfrak{h} \rtimes_A \mathbb{R} e_7$ is called *almost Abelian* if it has a codimension one Abelian ideal \mathfrak{h} . Its Lie bracket is given by:

 $[e_7, e_j] = A(e_j)$ and $[e_i, e_j] = 0$ for $e_i, e_j \in \mathfrak{h}$ and $A \in \mathfrak{gl}(\mathfrak{h})$.

The 7-dimensional Lie algebra $\mathfrak{g} = \mathfrak{h} \rtimes_A \mathbb{R} e_7$ is called *almost Abelian* if it has a codimension one Abelian ideal \mathfrak{h} . Its Lie bracket is given by:

 $[e_7, e_j] = A(e_j)$ and $[e_i, e_j] = 0$ for $e_i, e_j \in \mathfrak{h}$ and $A \in \mathfrak{gl}(\mathfrak{h}).$

Consider the G_2 -structure and the corresponding dual 4-form

$$arphi = \omega \wedge e^7 +
ho^+$$
 and $* arphi = rac{\omega^2}{2} +
ho^- \wedge e^7,$

where ω , ρ_+ and $\rho^- = *_{\mathfrak{h}} \rho^+$ are a $\mathrm{SU}(3)$ -structure on $\mathfrak{h} \simeq \mathbb{R}^6$.

 G_2 -structures φ have been studied in Almost Abelian Lie algebras \mathfrak{g}_A :

- 1. $(\mathfrak{g}_A, \varphi)$ is closed, if and only if $A \in \mathfrak{sl}(\mathbb{C}^3)$ [Freibert 2012].
- 2. $(\mathfrak{g}_A, \varphi)$ is coclosed, if and only if $A \in \mathfrak{sp}(\mathbb{R}^6)$ [Freibert 2013].

 G_2 -structures φ have been studied in Almost Abelian Lie algebras \mathfrak{g}_A :

- 1. $(\mathfrak{g}_A, \varphi)$ is closed, if and only if $A \in \mathfrak{sl}(\mathbb{C}^3)$ [Freibert 2012].
- 2. $(\mathfrak{g}_A, \varphi)$ is coclosed, if and only if $A \in \mathfrak{sp}(\mathbb{R}^6)$ [Freibert 2013].

<u>The aim</u>: To describe div T = 0 in terms of A.

 G_2 -structures φ have been studied in Almost Abelian Lie algebras \mathfrak{g}_A :

- 1. $(\mathfrak{g}_{\mathcal{A}}, \varphi)$ is closed, if and only if $\mathcal{A} \in \mathfrak{sl}(\mathbb{C}^3)$ [Freibert 2012].
- 2. $(\mathfrak{g}_A, \varphi)$ is coclosed, if and only if $A \in \mathfrak{sp}(\mathbb{R}^6)$ [Freibert 2013].

<u>The aim</u>: To describe div T = 0 in terms of A.

Consider the splitting

$$\mathfrak{gl}(\mathbb{R}^6) = \mathbb{R} \cdot \mathit{I}_6 \oplus \mathsf{sym}^0_+(\mathbb{R}^6) \oplus \mathsf{sym}^0_-(\mathbb{R}^6) \oplus \mathbb{R} \cdot J \oplus \mathfrak{su}(3) \oplus \mathfrak{m},$$

where

$$sym_{+}^{0}(\mathbb{R}^{6}) = \{A \in \mathfrak{gl}(\mathbb{R}^{6}); \quad A^{t} = A, \quad tr(A) = 0 \quad and \quad JA = AJ\}$$

$$sym_{-}^{0}(\mathbb{R}^{6}) = \{A \in \mathfrak{gl}(\mathbb{R}^{6}); \quad A^{t} = A \quad and \quad JA = -AJ\}$$

$$\mathfrak{su}(3) = \{A \in \mathfrak{gl}(\mathbb{R}^{6}); \quad A^{t} = -A, \quad tr(JA) = 0 \quad and \quad JA = AJ\}$$

$$\mathfrak{m} = \{A \in \mathfrak{gl}(\mathbb{R}^{6}); \quad A^{t} = -A, \quad and \quad JA = -AJ\}.$$

For $A = S(A) + C(A) \in \mathfrak{gl}(\mathbb{R}^6)$, we have

$$A = rac{\mathrm{tr}(A)}{6}I_6 + S_+(A) + S_-(A) + rac{\mathrm{tr}(JA)}{6}J + C_+(A) + C_-(A),$$

where

$$S_+(A)\in \operatorname{sym}^0_+({\mathbb R}^6), \quad S_-(A)\in \operatorname{sym}^0_-({\mathbb R}^6), \quad C_+(A)\in \mathfrak{su}(3) \quad ext{and} \quad C_-(A)\in \mathfrak{m},$$

For $A = S(A) + C(A) \in \mathfrak{gl}(\mathbb{R}^6)$, we have

$$A = \frac{\operatorname{tr}(A)}{6}I_{6} + S_{+}(A) + S_{-}(A) + \frac{\operatorname{tr}(JA)}{6}J + C_{+}(A) + C_{-}(A)$$

where

$$S_+(A)\in \mathsf{sym}^0_+(\mathbb{R}^6), \quad S_-(A)\in \mathsf{sym}^0_-(\mathbb{R}^6), \quad C_+(A)\in\mathfrak{su}(3) \quad ext{and} \quad C_-(A)\in\mathfrak{m},$$

For any k-form $\gamma \in \Lambda^k(\mathbb{R}^6)^*$, the Lie algebra $\mathfrak{gl}(\mathbb{R}^6)$ acts by

$$heta(A)\gamma=rac{d}{dt}|_{t=0}(e^{-At})^*\gamma.$$

For $A = S(A) + C(A) \in \mathfrak{gl}(\mathbb{R}^6)$, we have

$$A = \frac{\operatorname{tr}(A)}{6}I_{6} + S_{+}(A) + S_{-}(A) + \frac{\operatorname{tr}(JA)}{6}J + C_{+}(A) + C_{-}(A)$$

where

$$S_+(A)\in \operatorname{sym}^0_+({\mathbb R}^6), \quad S_-(A)\in \operatorname{sym}^0_-({\mathbb R}^6), \quad C_+(A)\in \mathfrak{su}(3) \quad ext{and} \quad C_-(A)\in \mathfrak{m},$$

For any k-form $\gamma \in \Lambda^k(\mathbb{R}^6)^*$, the Lie algebra $\mathfrak{gl}(\mathbb{R}^6)$ acts by

$$heta(A)\gamma = rac{d}{dt}|_{t=0}(e^{-At})^*\gamma.$$

In particular, for $\omega \in \Lambda^2$ it satisfies

$$heta(A)\omega = rac{\mathrm{tr}(A)}{2}\omega + heta(S_+(A))\omega + heta(C_-(A))\omega \in \Lambda^2_1 \oplus \Lambda^2_8 \oplus \Lambda^2_6$$

The torsion classes on $(\mathfrak{g}_{A}, \varphi)$

Lemma

The 1-form $\alpha = -*_{\mathfrak{h}} (\theta(A^t)\omega \wedge \rho^-)$ on \mathbb{R}^6 satisfies the identity $\alpha^{\sharp} \lrcorner \rho_+ = -4JC_-(A)$ and $\alpha = 0 \quad \Leftrightarrow \quad C_-(A) = 0.$

Lemma

The 1-form $\alpha = -*_{\mathfrak{h}} \left(\theta(A^t) \omega \wedge \rho^- \right)$ on \mathbb{R}^6 satisfies the identity $\alpha^{\sharp} \lrcorner \rho_+ = -4JC_-(A)$ and

$$lpha = \mathbf{0} \quad \Leftrightarrow \quad \mathcal{C}_{-}(\mathcal{A}) = \mathbf{0}.$$

Using the expressions $d\varphi = \tau_0\psi + 3\tau_1 \wedge \varphi + *\tau_3$ and $d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi$, we obtain:

Proposition (M. 2022)

The torsion forms of $(\mathfrak{g}_A, \varphi)$ are:

$$\begin{split} \tau_0 =& \frac{2}{7} \operatorname{tr}(JA), \quad \frac{1}{4} J(\tau_3) = \frac{1}{14} \operatorname{tr}(JA) I_6 - JS_-(A) + \frac{1}{4} J\alpha^{\sharp} \odot e^7 - \frac{3}{7} \operatorname{tr}(JA) e^7 \otimes e^7, \\ \tau_1 =& \frac{1}{12} \alpha - \frac{1}{6} \operatorname{tr}(A) e^7 \quad \tau_2 = \frac{2}{3} JC_-(A) - 2JS_+(A) - \frac{1}{3} J\alpha^{\sharp} \wedge e^7. \end{split}$$

Class	Vanishing torsion	Bracket relation
$\mathcal{W} = \{0\}$	$\tau_0 = 0, \tau_1 = 0, \tau_2 = 0, \tau_3 = 0$	$A\in\mathfrak{su}(3)$
\mathcal{W}_4	$ au_0 = 0, au_2 = 0, au_3 = 0$	$A \in \mathbb{R} \cdot I_6 \oplus \mathfrak{su}(3)$
\mathcal{W}_2	$ au_{0}=0, au_{1}=0, au_{3}=0$	$A\in sym^0_+\oplus\mathfrak{su}(3)$
\mathcal{W}_3	$ au_0 = 0, au_1 = 0, au_2 = 0$	$A\in sym^0\oplus\mathfrak{su}(3)$
$\mathcal{W}_1\oplus\mathcal{W}_3$	$ au_1=0, au_2=0$	$A\in \operatorname{sym}^0\oplus\mathbb{R}\cdot J\oplus\mathfrak{su}(3)$
$\mathcal{W}_2\oplus\mathcal{W}_4$	$ au_{0}=0, au_{3}=0$	$A\in \mathbb{R}\cdot \mathit{I}_{6}\oplus sym^{0}_{+}\oplus \mathfrak{su}(3)$
$\mathcal{W}_3 \oplus \mathcal{W}_4$	$ au_{0}=0, au_{2}=0$	$A\in \mathbb{R}\cdot \mathit{I}_{6}\oplus sym_{-}^{0}\oplus\mathfrak{su}(3)$
$\mathcal{W}_2\oplus\mathcal{W}_3$	$ au_{0}=0, au_{1}=0$	$A\in sym^0_+\oplussym^0\oplus\mathfrak{su}(3)$
$\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$	$ au_2=0$	$A \in \mathbb{R} \cdot I_6 \oplus \operatorname{sym}^0 \oplus \mathbb{R} \cdot J \oplus \mathfrak{su}(3)$
$\mathcal{W}_1\oplus\mathcal{W}_2\oplus\mathcal{W}_3$	$ au_{1}=0$	$A\in \operatorname{sym}^0_+\oplus\operatorname{sym}^0\oplus\mathbb{R}\cdot J\oplus\mathfrak{su}(3)$
$\mathcal{W}_2\oplus\mathcal{W}_3\oplus\mathcal{W}_4$	$ au_{0}=0$	$A\in sym(\mathbb{R}^6)\oplus\mathfrak{m}\oplus\mathfrak{su}(3)$
$\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$	No vanishing condition	${\mathcal A}\in \mathfrak{gl}(6,\mathbb{R})$

Table: Torsion classes of $(\mathfrak{g}_A, \varphi)$ [M. 2022]

 The Ricci curvature is Ric_A = ¹/₂[A, A^t] - tr(A)S(A) - tr(S(A)²)e⁷ ⊗ e⁷ [Arroyo, 2013]. The Lie algebra (g_A, φ) does not induce an Einstein metric if e₇ ⊥τ₁ = 0.

- The Ricci curvature is Ric_A = ¹/₂[A, A^t] tr(A)S(A) tr(S(A)²)e⁷ ⊗ e⁷ [Arroyo, 2013]. The Lie algebra (g_A, φ) does not induce an Einstein metric if e₇ ⊥τ₁ = 0.
- Notice that τ₃ = 0 implies τ₀ = 0. There does not exist an (g_A, φ) with torsion strictly in one of the following classes:

(i) \mathcal{W}_1 (in this class $\text{Scal}(g) = \frac{28}{9}\tau_0^2$, but (\mathfrak{g}_A, g) is either flat or Scal(g) < 0 [Milnor, 1976]).

- The Ricci curvature is Ric_A = ¹/₂[A, A^t] tr(A)S(A) tr(S(A)²)e⁷ ⊗ e⁷ [Arroyo, 2013]. The Lie algebra (g_A, φ) does not induce an Einstein metric if e₇ ⊥τ₁ = 0.
- Notice that τ₃ = 0 implies τ₀ = 0. There does not exist an (g_A, φ) with torsion strictly in one of the following classes:
 - (i) \mathcal{W}_1 (in this class $Scal(g) = \frac{28}{9}\tau_0^2$, but (\mathfrak{g}_A, g) is either flat or Scal(g) < 0 [Milnor, 1976]).
 - (ii) $W_1 \oplus W_2$ (If *M* is connected this class reduces to either W_1 or W_2 [Martin Cabrera-Monar-Swann, 1996])

- The Ricci curvature is Ric_A = ¹/₂[A, A^t] tr(A)S(A) tr(S(A)²)e⁷ ⊗ e⁷ [Arroyo, 2013]. The Lie algebra (g_A, φ) does not induce an Einstein metric if e₇ ⊥τ₁ = 0.
- Notice that τ₃ = 0 implies τ₀ = 0. There does not exist an (g_A, φ) with torsion strictly in one of the following classes:
 - (i) \mathcal{W}_1 (in this class $Scal(g) = \frac{28}{9}\tau_0^2$, but (\mathfrak{g}_A, g) is either flat or Scal(g) < 0 [Milnor, 1976]).
 - (ii) $W_1 \oplus W_2$ (If *M* is connected this class reduces to either W_1 or W_2 [Martin Cabrera-Monar-Swann, 1996])
 - (iii) $\mathcal{W}_1 \oplus \mathcal{W}_4$ (If φ is invariant then $\mathcal{W}_1 \oplus \mathcal{W}_4$ reduces to either \mathcal{W}_1 or \mathcal{W}_4).

- The Ricci curvature is Ric_A = ¹/₂[A, A^t] tr(A)S(A) tr(S(A)²)e⁷ ⊗ e⁷ [Arroyo, 2013]. The Lie algebra (g_A, φ) does not induce an Einstein metric if e₇ ⊥τ₁ = 0.
- Notice that τ₃ = 0 implies τ₀ = 0. There does not exist an (g_A, φ) with torsion strictly in one of the following classes:
 - (i) \mathcal{W}_1 (in this class $Scal(g) = \frac{28}{9}\tau_0^2$, but (\mathfrak{g}_A, g) is either flat or Scal(g) < 0 [Milnor, 1976]).
 - (ii) $W_1 \oplus W_2$ (If *M* is connected this class reduces to either W_1 or W_2 [Martin Cabrera-Monar-Swann, 1996])
 - (iii) $W_1 \oplus W_4$ (If φ is invariant then $W_1 \oplus W_4$ reduces to either W_1 or W_4).
 - (iv) $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_4$ (..?)

- The Ricci curvature is Ric_A = ¹/₂[A, A^t] tr(A)S(A) tr(S(A)²)e⁷ ⊗ e⁷ [Arroyo, 2013]. The Lie algebra (g_A, φ) does not induce an Einstein metric if e₇ ⊥τ₁ = 0.
- Notice that τ₃ = 0 implies τ₀ = 0. There does not exist an (g_A, φ) with torsion strictly in one of the following classes:
 - (i) \mathcal{W}_1 (in this class $Scal(g) = \frac{28}{9}\tau_0^2$, but (\mathfrak{g}_A, g) is either flat or Scal(g) < 0 [Milnor, 1976]).
 - (ii) $W_1 \oplus W_2$ (If *M* is connected this class reduces to either W_1 or W_2 [Martin Cabrera-Monar-Swann, 1996])
 - (iii) $W_1 \oplus W_4$ (If φ is invariant then $W_1 \oplus W_4$ reduces to either W_1 or W_4).
 - (iv) $\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_4$ (..?)
- The closed case

$$au_0=0$$
 $au_1=0$ and $au_3=0$ \Leftrightarrow $A=S_+(A)+C_+(A)\in\mathfrak{sl}(\mathbb{C}^3).$

The coclosed case

$$au_2=0 \quad ext{and} \quad au_1=0 \quad \Leftrightarrow \quad A=S_-(A)+rac{ ext{tr}(\mathcal{J}A)}{6}\mathcal{J}+\mathcal{C}_+(A)\in\mathfrak{sp}(\mathbb{R}^6).$$

Definition

The Lie algebra \mathfrak{g} is called a *unimodular* Lie algebra if tr(ad(u)) = 0 for every $u \in \mathfrak{g}$. A *lattice* Γ of a Lie group G is a discrete subgroup $\Gamma \subset G$, such that the quotient $\Gamma \setminus G$ is compact.

Definition

The Lie algebra \mathfrak{g} is called a *unimodular* Lie algebra if tr(ad(u)) = 0 for every $u \in \mathfrak{g}$. A *lattice* Γ of a Lie group G is a discrete subgroup $\Gamma \subset G$, such that the quotient $\Gamma \setminus G$ is compact.

If the Lie group G admits a lattice then it is unimodular [Milnor, 1976].

Definition

The Lie algebra \mathfrak{g} is called a *unimodular* Lie algebra if tr(ad(u)) = 0 for every $u \in \mathfrak{g}$. A *lattice* Γ of a Lie group G is a discrete subgroup $\Gamma \subset G$, such that the quotient $\Gamma \setminus G$ is compact.

If the Lie group G admits a lattice then it is unimodular [Milnor, 1976].

Class	Vanishing torsion	Bracket relation
$\mathcal{W} = \{0\}$	$\tau_0 = 0, \tau_1 = 0, \tau_2 = 0, \tau_3 = 0$	$A\in\mathfrak{su}(3)$
\mathcal{W}_2	$\tau_0 = 0, \tau_1 = 0, \tau_3 = 0$	$A\insym^{0}_{+}\oplus\mathfrak{su}(3)$
\mathcal{W}_3	$ au_0 = 0, au_1 = 0, au_2 = 0$	${\mathcal A}\in {\operatorname{sym}}^0\oplus {\mathfrak{su}}(3)$
$\mathcal{W}_1\oplus\mathcal{W}_3$	$\tau_1=0, \tau_2=0$	$A\in sym^0\oplus\mathbb{R}\cdot J\oplus\mathfrak{su}(3)$
$\mathcal{W}_2\oplus\mathcal{W}_3$	$\tau_0=0, \tau_1=0$	${\mathcal A}\in \operatorname{sym}^0_+\oplus\operatorname{sym}^0\oplus\mathfrak{su}(3)$
$\mathcal{W}_1\oplus\mathcal{W}_2\oplus\mathcal{W}_3$	$ au_1=0$	$A\in \operatorname{sym}^0_+\oplus\operatorname{sym}^0\oplus\mathbb{R}\cdot J\oplus\mathfrak{su}(3)$
$\mathcal{W}_2\oplus\mathcal{W}_3\oplus\mathcal{W}_4$	$ au_{0}=0$	$A\in sym^0_+\oplussym^0\oplus\mathfrak{m}\oplus\mathfrak{su}(3)$
$\mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$	No vanishing condition	$A \in \operatorname{sym}^{0}_{+} \oplus \operatorname{sym}^{0}_{-} \oplus \mathbb{R} \cdot J \oplus \mathfrak{m} \oplus \mathfrak{su}(3)$

Table: Torsion classes of $(\mathfrak{g}_A, \varphi)$ unimodular

The harmonicity of $(\mathfrak{g}_{\mathcal{A}}, \varphi)$

The full torsion tensor of $(\mathfrak{g}_A, \varphi)$ is

$$T = \frac{1}{2} \left(\begin{array}{c|c} [J, S(A)] + [J, C(A)] + (JA^t + AJ) & -J\alpha(A)^{\sharp} \\ \hline 0 & & \operatorname{tr}(JA) \end{array} \right)$$

The Levi-Civita connection given by the left-invariant metric [Milnor, 1976] is:

$$abla_7 e_7 = 0, \quad
abla_i e_7 = -S(A)(e_i), \quad
abla_7 e_i = C(A)(e_i) \quad \text{and} \quad
abla_i e_j = \langle S(A)(e_i), e_j \rangle e_7$$
where $i, j = 1, ..., 6$.

The harmonicity of $(\mathfrak{g}_{\mathcal{A}},arphi)$

The full torsion tensor of $(\mathfrak{g}_A, \varphi)$ is

$$T = \frac{1}{2} \left(\begin{array}{c|c} [J, S(A)] + [J, C(A)] + (JA^t + AJ) & -J\alpha(A)^{\sharp} \\ \hline 0 & & \operatorname{tr}(JA) \end{array} \right)$$

The Levi-Civita connection given by the left-invariant metric [Milnor, 1976] is:

$$abla_7 e_7 = 0$$
, $abla_i e_7 = -S(A)(e_i)$, $abla_7 e_i = C(A)(e_i)$ and $abla_i e_j = \langle S(A)(e_i), e_j \rangle e_7$
where $i, j = 1, ..., 6$.

Proposition [M. 2022]

The divergence of T is

$$\operatorname{div} T = -\frac{1}{2}\operatorname{tr}(A)J^*\alpha(A) + \frac{1}{2}\theta(C(A))J^*\alpha(A) - \frac{1}{2}\operatorname{tr}(A)\operatorname{tr}(JA)e^7$$

Theorem [M. 2022]

The almost Abelian Lie algebra with G₂-structure $(\mathfrak{g}_A, \varphi)$ is harmonic, if and only if,

$$\operatorname{tr}(A)\operatorname{tr}(JA) = 0$$
 and $JC(A)J(\alpha^{\sharp}) = -\operatorname{tr}(A)\alpha^{\sharp}.$

In particular, φ is harmonic if its torsion belongs to one of the following classes:

$$\{0\}, \quad \mathcal{W}_2, \quad \mathcal{W}_3, \quad \mathcal{W}_4, \\ \mathcal{W}_1 \oplus \mathcal{W}_3, \quad \mathcal{W}_2 \oplus \mathcal{W}_4, \quad \mathcal{W}_3 \oplus \mathcal{W}_4, \\ \mathcal{W}_2 \oplus \mathcal{W}_3, \quad \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3.$$

Further, if φ is of type $\mathcal{W}_1 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$ and div T = 0, then φ is of type $\mathcal{W}_1 \oplus \mathcal{W}_3$ or $\mathcal{W}_3 \oplus \mathcal{W}_4$.

• The torsion classes {0}, W_2 , W_3 , W_4 and $W_2 \oplus W_3$ are generically harmonic. Since τ_0 is constant for Lie groups, then the torsion classes $W_1 \oplus W_3$ and $W_1 \oplus W_2 \oplus W_3$ are also harmonic.

- The torsion classes {0}, W_2 , W_3 , W_4 and $W_2 \oplus W_3$ are generically harmonic. Since τ_0 is constant for Lie groups, then the torsion classes $W_1 \oplus W_3$ and $W_1 \oplus W_2 \oplus W_3$ are also harmonic.
- The almost Abelian Lie algebras (g_A, φ) whose G₂-structure has torsion in the classes W₂ ⊕ W₄, and W₃ ⊕ W₄ are new examples of harmonic G₂-structures. However, these new examples (g_A, φ) do not admit a lattice.

- The torsion classes {0}, W_2 , W_3 , W_4 and $W_2 \oplus W_3$ are generically harmonic. Since τ_0 is constant for Lie groups, then the torsion classes $W_1 \oplus W_3$ and $W_1 \oplus W_2 \oplus W_3$ are also harmonic.
- The almost Abelian Lie algebras (g_A, φ) whose G₂-structure has torsion in the classes W₂ ⊕ W₄, and W₃ ⊕ W₄ are new examples of harmonic G₂-structures. However, these new examples (g_A, φ) do not admit a lattice.
- (G_2-structure with torsion in $\mathcal{W}_2\oplus\mathcal{W}_3\oplus\mathcal{W}_4)$ For

$$Ae_1 = Ae_2 = 0, \quad Ae_3 = e_5, \quad Ae_4 = -e_6, \quad Ae_5 = -e_3, \quad Ae_6 = e_4,$$

we have

$$au_0=0, \quad au_1=4e^2, \quad au_2=-rac{1}{3}\left(e^{36}+e^{45}-4e^{17}
ight) \quad ext{and} \quad \jmath(au_3)=-4(e^1\otimes e^7+e^7\otimes e^1).$$

And $\alpha^{\sharp} = 4e_2$, since $J\alpha^{\sharp} \in \ker A$ then div T = 0.

Many thanks