Harmonic G_{2}-structures on almost Abelian Lie groups

Andrés Julián Moreno Ospina
Universidade Estadual de Campinas
FAPESP - Fundação de Amparo à Pesquisa do Estado de São Paulo
Workshop BRIDGES: Specials geometries and gauge theories

June 21, 2023

Motivation

On a 7-dimensional Riemannian manifold M :
What is the best G_{2}-structure among some class?

- Among the all G_{2}-structures, it is the torsion free G_{2}-structure, since it corresponds with metrics with holonomy in G_{2}.
- Depending on the geometry/topology of M, the existence of torsion free a G_{2}-structure is trivial or obstructed.
- Sometimes is convenient to consider a weaker torsion condition. For instance, when M is a homogeneous space.

Outline

1. Review of G_{2}-structures G_{2}-structures and their torsion Harmonic G_{2}-structures
Previous results
2. Almost Abelian Lie groups

The torsion classes on ($\mathfrak{g}_{A}, \varphi$)
The harmonicity of $\left(\mathfrak{g}_{A}, \varphi\right)$

G_{2}-structures and their torsion

A G_{2}-structure on a 7-manifold M is given by a differential 3-form φ on M, which is pointwise isomorphic to the 3 -form

$$
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$ and $\left(\mathbb{R}^{7}\right)^{*}=\left\langle\left\{e^{1}, \ldots, e^{7}\right\}\right\rangle$.

G_{2}-structures and their torsion

A G_{2}-structure on a 7-manifold M is given by a differential 3-form φ on M, which is pointwise isomorphic to the 3 -form

$$
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$ and $\left(\mathbb{R}^{7}\right)^{*}=\left\langle\left\{e^{1}, \ldots, e^{7}\right\}\right\rangle$.
For $\left(M^{7}, \varphi\right)$, there are an induced Riemannian metric and orientation:

$$
\left.\left.6 g_{\varphi}(u, v) \operatorname{vol}_{\varphi}=(u\lrcorner \varphi\right) \wedge(v\lrcorner \varphi\right) \wedge \varphi \quad \text { for } \quad u, v \in X(M)
$$

G_{2}-structures and their torsion

A G_{2}-structure on a 7-manifold M is given by a differential 3-form φ on M, which is pointwise isomorphic to the 3 -form

$$
\varphi_{0}=e^{123}+e^{145}+e^{167}+e^{246}-e^{257}-e^{347}-e^{356} \in \Lambda^{3}\left(\mathbb{R}^{7}\right)^{*}
$$

where $e^{i j k}=e^{i} \wedge e^{j} \wedge e^{k}$ and $\left(\mathbb{R}^{7}\right)^{*}=\left\langle\left\{e^{1}, \ldots, e^{7}\right\}\right\rangle$.
For $\left(M^{7}, \varphi\right)$, there are an induced Riemannian metric and orientation:

$$
\left.\left.6 g_{\varphi}(u, v) \operatorname{vol}_{\varphi}=(u\lrcorner \varphi\right) \wedge(v\lrcorner \varphi\right) \wedge \varphi \quad \text { for } \quad u, v \in X(M)
$$

Hence, φ induces also:

- A Riemannian connection ∇_{φ}, a Hodge star operator $*_{\varphi}$, a dual 4-form $*_{\varphi} \varphi$. And (M, φ) is called a G_{2}-manifold when:

$$
\left.\nabla_{\varphi} \varphi=0 \quad \text { (i.e. } \quad \operatorname{Hol}\left(g_{\varphi}\right) \subseteq \mathrm{G}_{2}\right)
$$

Fernández and Gray (1982)

φ is torsion free $\nabla_{\varphi} \varphi=0$, if and only if, φ is closed $d \varphi=0$ and coclosed $d * \varphi=0$.

Fernández and Gray (1982)

φ is torsion free $\nabla_{\varphi} \varphi=0$, if and only if, φ is closed $d \varphi=0$ and coclosed $d * \varphi=0$.
The intrinsic torsion $\nabla \varphi$ is completely encoded by the full torsion tensor T :

$$
\nabla_{a} \varphi_{b c d}=T_{a}^{l}(* \varphi)_{l b c d} \quad \text { where } \quad T \in \operatorname{End}(T M)
$$

Fernández and Gray (1982)

φ is torsion free $\nabla_{\varphi} \varphi=0$, if and only if, φ is closed $d \varphi=0$ and coclosed $d * \varphi=0$.
The intrinsic torsion $\nabla \varphi$ is completely encoded by the full torsion tensor T :

$$
\nabla_{a} \varphi_{b c d}=T_{a}^{\prime}(* \varphi)_{l b c d} \quad \text { where } \quad T \in \operatorname{End}(T M)
$$

According to the decomposition of $\mathcal{W}:=\operatorname{End}\left(T_{p} M\right)$ into G_{2}-irreducible submodules ([Fernández-Gray, 1982])

$$
\mathcal{W}=\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}
$$

Where

$$
\mathcal{W}_{1} \oplus \mathcal{W}_{3} \simeq \operatorname{sym}\left(T_{p} M\right)=\left[g_{p}\right] \oplus \operatorname{sym}_{0}\left(T_{p} M\right) \quad \text { and } \quad \mathcal{W}_{2} \oplus \mathcal{W}_{4} \simeq \mathfrak{s o}\left(T_{p} M\right)=\mathfrak{g}_{2} \oplus \mathbb{R}^{7}
$$

T splits into G_{2}-irreducible components [Karigiannis, 2008]:

$$
T=\frac{\tau_{0}}{4} g-\frac{1}{2} \tau_{2}-\frac{1}{4} \jmath\left(\tau_{3}\right)-*\left(\tau_{1} \wedge * \varphi\right) \in \mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}
$$

where $\left.\left.\jmath\left(\tau_{3}\right)_{i j}=*\left(e_{i}\right\lrcorner \varphi \wedge e_{j}\right\lrcorner \varphi \wedge \tau_{3}\right)$ and $\tau_{k} \in \Omega^{k}$ (for $\left.k=0,1,2,3\right)$ are called the torsion forms, and defined by:

$$
d \varphi=\tau_{0} * \varphi+3 \tau_{1} \wedge \varphi+* \tau_{3} \quad \text { and } \quad d * \varphi=4 \tau_{1} \wedge * \varphi+\tau_{2} \wedge \varphi .
$$

T splits into G_{2}-irreducible components [Karigiannis, 2008]:

$$
T=\frac{\tau_{0}}{4} g-\frac{1}{2} \tau_{2}-\frac{1}{4} \jmath\left(\tau_{3}\right)-*\left(\tau_{1} \wedge * \varphi\right) \in \mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}
$$

where $\left.\left.\jmath\left(\tau_{3}\right)_{i j}=*\left(e_{i}\right\lrcorner \varphi \wedge e_{j}\right\lrcorner \varphi \wedge \tau_{3}\right)$ and $\tau_{k} \in \Omega^{k}$ (for $\left.k=0,1,2,3\right)$ are called the torsion forms, and defined by:

$$
d \varphi=\tau_{0} * \varphi+3 \tau_{1} \wedge \varphi+* \tau_{3} \quad \text { and } \quad d * \varphi=4 \tau_{1} \wedge * \varphi+\tau_{2} \wedge \varphi .
$$

In total, there are 16 -torsion classes, for instance:

- \mathcal{W}_{1} is the class of nearly parallel G_{2}-structures.
- \mathcal{W}_{4} is the class of locally conformal parallel G_{2}-structures.
- \mathcal{W}_{2} is the class of closed G_{2}-structures.
- $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ is the class of coclosed G_{2}-structures.

Harmonic G_{2}-structures

For M^{7} compact, the energy of φ is defined by

$$
E(\varphi)=\frac{1}{2} \int_{M}\left|T_{\varphi}\right|^{2} \mathrm{vol}
$$

Harmonic G_{2}-structures

For M^{7} compact, the energy of φ is defined by

$$
E(\varphi)=\frac{1}{2} \int_{M}\left|T_{\varphi}\right|^{2} \mathrm{vol}
$$

And its first variation is [Grigorian, 2017]:

$$
\left.\left.\frac{d}{d t}\right|_{t=0} E\left(\varphi_{t}\right)=-\int_{M}\left\langle\operatorname{div} T_{\varphi}, V\right\rangle \operatorname{vol} \quad \text { among }\left.\quad \frac{d}{d t}\right|_{t=0} \varphi_{t}=V\right\lrcorner * \varphi
$$

Harmonic G_{2}-structures

For M^{7} compact, the energy of φ is defined by

$$
E(\varphi)=\frac{1}{2} \int_{M}\left|T_{\varphi}\right|^{2} \mathrm{vol}
$$

And its first variation is [Grigorian, 2017]:

$$
\left.\left.\frac{d}{d t}\right|_{t=0} E\left(\varphi_{t}\right)=-\int_{M}\left\langle\operatorname{div} T_{\varphi}, V\right\rangle \operatorname{vol} \quad \text { among }\left.\quad \frac{d}{d t}\right|_{t=0} \varphi_{t}=V\right\lrcorner * \varphi
$$

Thus the critical points are

$$
\operatorname{Crit}(E):=\left\{\varphi \in \Omega_{+}^{3}: \quad \operatorname{div} T_{\varphi}:=\operatorname{tr} \nabla T=0\right\}
$$

Harmonic G_{2}-structures

For M^{7} compact, the energy of φ is defined by

$$
E(\varphi)=\frac{1}{2} \int_{M}\left|T_{\varphi}\right|^{2} \mathrm{vol}
$$

And its first variation is [Grigorian, 2017]:

$$
\left.\left.\frac{d}{d t}\right|_{t=0} E\left(\varphi_{t}\right)=-\int_{M}\left\langle\operatorname{div} T_{\varphi}, V\right\rangle \operatorname{vol} \quad \text { among }\left.\quad \frac{d}{d t}\right|_{t=0} \varphi_{t}=V\right\lrcorner * \varphi
$$

Thus the critical points are

$$
\operatorname{Crit}(E):=\left\{\varphi \in \Omega_{+}^{3}: \quad \operatorname{div} T_{\varphi}:=\operatorname{tr} \nabla T=0\right\}
$$

Definition

A G_{2}-structure φ is called harmonic (divergence free) if div $T=0$.

Previous results

- The G_{2}-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
(i) τ_{0} is constant, $\tau_{1}=0$ and arbitrary τ_{2} and τ_{3}.
(ii) $\tau_{0}=\tau_{2}=\tau_{3}=0$ and τ_{1} arbitrary.

Previous results

- The G_{2}-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
(i) τ_{0} is constant, $\tau_{1}=0$ and arbitrary τ_{2} and τ_{3}.
(ii) $\tau_{0}=\tau_{2}=\tau_{3}=0$ and τ_{1} arbitrary.
- Examples of harmonic G_{2}-structures on $\mathbb{R}^{3} \ltimes_{A, B, C} \mathbb{R}^{4}$ with $A, B, C \in \mathfrak{s l}_{4}(\mathbb{R})$ such that $\tau_{0} \neq 0$ and $\tau_{1} \neq 0$ [Garrone 2021].
- $\mathrm{Sp}(2)$-invariant harmonic G_{2}-structures on \mathbb{S}^{7} with the same Riemannian metric [Loubeau-M-Sá Earp-Saavedra, 2022].

Previous results

- The G_{2}-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
(i) τ_{0} is constant, $\tau_{1}=0$ and arbitrary τ_{2} and τ_{3}.
(ii) $\tau_{0}=\tau_{2}=\tau_{3}=0$ and τ_{1} arbitrary.
- Examples of harmonic G_{2}-structures on $\mathbb{R}^{3} \ltimes_{A, B, C} \mathbb{R}^{4}$ with $A, B, C \in \mathfrak{s l}_{4}(\mathbb{R})$ such that $\tau_{0} \neq 0$ and $\tau_{1} \neq 0$ [Garrone 2021].
- $\operatorname{Sp}(2)$-invariant harmonic G_{2}-structures on \mathbb{S}^{7} with the same Riemannian metric [Loubeau-M-Sá Earp-Saavedra, 2022].
- Spinorial description of the harmonic condition [Niedzialomski, 2020].

Previous results

- The G_{2}-structure is harmonic if it has one of the following torsion [Grigorian, 2019]:
(i) τ_{0} is constant, $\tau_{1}=0$ and arbitrary τ_{2} and τ_{3}.
(ii) $\tau_{0}=\tau_{2}=\tau_{3}=0$ and τ_{1} arbitrary.
- Examples of harmonic G_{2}-structures on $\mathbb{R}^{3} \ltimes_{A, B, C} \mathbb{R}^{4}$ with $A, B, C \in \mathfrak{s l}_{4}(\mathbb{R})$ such that $\tau_{0} \neq 0$ and $\tau_{1} \neq 0$ [Garrone 2021].
- $\operatorname{Sp}(2)$-invariant harmonic G_{2}-structures on \mathbb{S}^{7} with the same Riemannian metric [Loubeau-M-Sá Earp-Saavedra, 2022].
- Spinorial description of the harmonic condition [Niedzialomski, 2020].
- General results on the associated gradient flow, from different perspectives:
- By unit octonion sections [Grigorian, 2019].
- Sections of a homogeneous fiber bundle [Loubeau- Sá Earp, 2019].
- Evolving the G_{2}-structure φ [Dwivedi-Gianniotis-Karigiannis, 2019]. And recently, evolving the tensor field associated with the H -structure [Fadel-Loubeau-M.-Sá Earp, 2022].

Almost Abelian Lie algebras

The 7-dimensional Lie algebra $\mathfrak{g}=\mathfrak{h} \rtimes_{A} \mathbb{R} e_{7}$ is called almost Abelian if it has a codimension one Abelian ideal \mathfrak{h}.

Almost Abelian Lie algebras

The 7-dimensional Lie algebra $\mathfrak{g}=\mathfrak{h} \rtimes_{A} \mathbb{R} e_{7}$ is called almost Abelian if it has a codimension one Abelian ideal \mathfrak{h}. Its Lie bracket is given by:

$$
\left[e_{7}, e_{j}\right]=A\left(e_{j}\right) \quad \text { and } \quad\left[e_{i}, e_{j}\right]=0 \quad \text { for } \quad e_{i}, e_{j} \in \mathfrak{h} \quad \text { and } \quad A \in \mathfrak{g l}(\mathfrak{h}) .
$$

Almost Abelian Lie algebras

The 7-dimensional Lie algebra $\mathfrak{g}=\mathfrak{h} \rtimes_{A} \mathbb{R} e_{7}$ is called almost Abelian if it has a codimension one Abelian ideal \mathfrak{h}. Its Lie bracket is given by:

$$
\left[e_{7}, e_{j}\right]=A\left(e_{j}\right) \quad \text { and } \quad\left[e_{i}, e_{j}\right]=0 \quad \text { for } \quad e_{i}, e_{j} \in \mathfrak{h} \quad \text { and } \quad A \in \mathfrak{g l}(\mathfrak{h}) .
$$

Consider the G_{2}-structure and the corresponding dual 4-form

$$
\varphi=\omega \wedge e^{7}+\rho^{+} \quad \text { and } \quad * \varphi=\frac{\omega^{2}}{2}+\rho^{-} \wedge e^{7}
$$

where ω, ρ_{+}and $\rho^{-}=*_{\mathfrak{h}} \rho^{+}$are a $\operatorname{SU}(3)$-structure on $\mathfrak{h} \simeq \mathbb{R}^{6}$.
G_{2}-structures φ have been studied in Almost Abelian Lie algebras \mathfrak{g}_{A} :

1. $\left(\mathfrak{g}_{A}, \varphi\right)$ is closed, if and only if $A \in \mathfrak{s l}\left(\mathbb{C}^{3}\right)$ [Freibert 2012].
2. $\left(\mathfrak{g}_{A}, \varphi\right)$ is coclosed, if and only if $A \in \mathfrak{s p}\left(\mathbb{R}^{6}\right)$ [Freibert 2013].
G_{2}-structures φ have been studied in Almost Abelian Lie algebras \mathfrak{g}_{A} :
3. $\left(\mathfrak{g}_{A}, \varphi\right)$ is closed, if and only if $A \in \mathfrak{s l}\left(\mathbb{C}^{3}\right)$ [Freibert 2012].
4. $\left(\mathfrak{g}_{A}, \varphi\right)$ is coclosed, if and only if $A \in \mathfrak{s p}\left(\mathbb{R}^{6}\right)$ [Freibert 2013].

The aim: To describe $\operatorname{div} T=0$ in terms of A.
G_{2}-structures φ have been studied in Almost Abelian Lie algebras \mathfrak{g}_{A} :

1. $\left(\mathfrak{g}_{A}, \varphi\right)$ is closed, if and only if $A \in \mathfrak{s l}\left(\mathbb{C}^{3}\right)$ [Freibert 2012].
2. $\left(\mathfrak{g}_{A}, \varphi\right)$ is coclosed, if and only if $A \in \mathfrak{s p}\left(\mathbb{R}^{6}\right)$ [Freibert 2013].

The aim: To describe $\operatorname{div} T=0$ in terms of A.
Consider the splitting

$$
\mathfrak{g l}\left(\mathbb{R}^{6}\right)=\mathbb{R} \cdot I_{6} \oplus \operatorname{sym}_{+}^{0}\left(\mathbb{R}^{6}\right) \oplus \operatorname{sym}_{-}^{0}\left(\mathbb{R}^{6}\right) \oplus \mathbb{R} \cdot J \oplus \mathfrak{s u}(3) \oplus \mathfrak{m}
$$

where

$$
\left.\begin{array}{rlrl}
\operatorname{sym}_{+}^{0}\left(\mathbb{R}^{6}\right) & =\left\{A \in \mathfrak{g l}\left(\mathbb{R}^{6}\right) ;\right. & & A^{t}=A, \quad \operatorname{tr}(A)=0 \quad \text { and } \quad J A=A J
\end{array}\right\}
$$

For $A=S(A)+C(A) \in \mathfrak{g l}\left(\mathbb{R}^{6}\right)$, we have

$$
A=\frac{\operatorname{tr}(A)}{6} I_{6}+S_{+}(A)+S_{-}(A)+\frac{\operatorname{tr}(J A)}{6} J+C_{+}(A)+C_{-}(A),
$$

where

$$
S_{+}(A) \in \operatorname{sym}_{+}^{0}\left(\mathbb{R}^{6}\right), \quad S_{-}(A) \in \operatorname{sym}_{-}^{0}\left(\mathbb{R}^{6}\right), \quad C_{+}(A) \in \mathfrak{s u}(3) \quad \text { and } \quad C_{-}(A) \in \mathfrak{m}
$$

For $A=S(A)+C(A) \in \mathfrak{g l}\left(\mathbb{R}^{6}\right)$, we have

$$
A=\frac{\operatorname{tr}(A)}{6} I_{6}+S_{+}(A)+S_{-}(A)+\frac{\operatorname{tr}(J A)}{6} J+C_{+}(A)+C_{-}(A)
$$

where

$$
S_{+}(A) \in \operatorname{sym}_{+}^{0}\left(\mathbb{R}^{6}\right), \quad S_{-}(A) \in \operatorname{sym}_{-}^{0}\left(\mathbb{R}^{6}\right), \quad C_{+}(A) \in \mathfrak{s u}(3) \quad \text { and } \quad C_{-}(A) \in \mathfrak{m}
$$

For any k-form $\gamma \in \Lambda^{k}\left(\mathbb{R}^{6}\right)^{*}$, the Lie algebra $\mathfrak{g l}\left(\mathbb{R}^{6}\right)$ acts by

$$
\theta(A) \gamma=\left.\frac{d}{d t}\right|_{t=0}\left(e^{-A t}\right)^{*} \gamma
$$

For $A=S(A)+C(A) \in \mathfrak{g l}\left(\mathbb{R}^{6}\right)$, we have

$$
A=\frac{\operatorname{tr}(A)}{6} I_{6}+S_{+}(A)+S_{-}(A)+\frac{\operatorname{tr}(J A)}{6} J+C_{+}(A)+C_{-}(A)
$$

where

$$
S_{+}(A) \in \operatorname{sym}_{+}^{0}\left(\mathbb{R}^{6}\right), \quad S_{-}(A) \in \operatorname{sym}_{-}^{0}\left(\mathbb{R}^{6}\right), \quad C_{+}(A) \in \mathfrak{s u}(3) \quad \text { and } \quad C_{-}(A) \in \mathfrak{m},
$$

For any k-form $\gamma \in \Lambda^{k}\left(\mathbb{R}^{6}\right)^{*}$, the Lie algebra $\mathfrak{g l}\left(\mathbb{R}^{6}\right)$ acts by

$$
\theta(A) \gamma=\left.\frac{d}{d t}\right|_{t=0}\left(e^{-A t}\right)^{*} \gamma
$$

In particular, for $\omega \in \Lambda^{2}$ it satisfies

$$
\theta(A) \omega=\frac{\operatorname{tr}(A)}{2} \omega+\theta\left(S_{+}(A)\right) \omega+\theta\left(C_{-}(A)\right) \omega \in \Lambda_{1}^{2} \oplus \Lambda_{8}^{2} \oplus \Lambda_{6}^{2}
$$

The torsion classes on $\left(\mathfrak{g}_{A}, \varphi\right)$

Lemma

The 1-form $\alpha=-*_{\mathfrak{h}}\left(\theta\left(A^{t}\right) \omega \wedge \rho^{-}\right)$on \mathbb{R}^{6} satisfies the identity $\left.\alpha^{\sharp}\right\lrcorner \rho_{+}=-4 J C_{-}(A)$ and

$$
\alpha=0 \quad \Leftrightarrow \quad C_{-}(A)=0 .
$$

The torsion classes on $\left(\mathfrak{g}_{A}, \varphi\right)$

Lemma

The 1-form $\alpha=-*_{\mathfrak{h}}\left(\theta\left(A^{t}\right) \omega \wedge \rho^{-}\right)$on \mathbb{R}^{6} satisfies the identity $\left.\alpha^{\sharp}\right\lrcorner \rho_{+}=-4 J C_{-}(A)$ and

$$
\alpha=0 \quad \Leftrightarrow \quad C_{-}(A)=0 .
$$

Using the expressions $d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}$ and $d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi$, we obtain:

Proposition (M. 2022)

The torsion forms of $\left(\mathfrak{g}_{A}, \varphi\right)$ are:

$$
\begin{aligned}
& \tau_{0}=\frac{2}{7} \operatorname{tr}(J A), \quad \frac{1}{4} \jmath\left(\tau_{3}\right)=\frac{1}{14} \operatorname{tr}(J A) I_{6}-J S_{-}(A)+\frac{1}{4} J \alpha^{\sharp} \odot e^{7}-\frac{3}{7} \operatorname{tr}(J A) e^{7} \otimes e^{7}, \\
& \tau_{1}=\frac{1}{12} \alpha-\frac{1}{6} \operatorname{tr}(A) e^{7} \quad \tau_{2}=\frac{2}{3} J C_{-}(A)-2 J S_{+}(A)-\frac{1}{3} J \alpha^{\sharp} \wedge e^{7} .
\end{aligned}
$$

Class	Vanishing torsion	Bracket relation
$\mathcal{W}=\{0\}$	$\tau_{0}=0, \tau_{1}=0, \tau_{2}=0, \tau_{3}=0$	$A \in \mathfrak{s u}(3)$
\mathcal{W}_{4}	$\tau_{0}=0, \tau_{2}=0, \tau_{3}=0$	$A \in \mathbb{R} \cdot I_{6} \oplus \mathfrak{s u}(3)$
\mathcal{W}_{2}	$\tau_{0}=0, \tau_{1}=0, \tau_{3}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \mathfrak{s u}(3)$
\mathcal{W}_{3}	$\tau_{0}=0, \tau_{1}=0, \tau_{2}=0$	$A \in \operatorname{sym}_{-}^{0} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{1} \oplus \mathcal{W}_{3}$	$\tau_{1}=0, \tau_{2}=0$	$A \in \operatorname{sym}_{-}^{0} \oplus \mathbb{R} \cdot J \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{2} \oplus \mathcal{W}_{4}$	$\tau_{0}=0, \tau_{3}=0$	$A \in \mathbb{R} \cdot I_{6} \oplus \operatorname{sym}_{+}^{0} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$\tau_{0}=0, \tau_{2}=0$	$A \in \mathbb{R} \cdot I_{6} \oplus \operatorname{sym}_{-}^{0} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{2} \oplus \mathcal{W}_{3}$	$\tau_{0}=0, \tau_{1}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \operatorname{sym}_{-}^{0} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{1} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$\tau_{2}=0$	$A \in \mathbb{R} \cdot I_{6} \oplus \operatorname{sym}_{-}^{0} \oplus \mathbb{R} \cdot J \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}$	$\tau_{1}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \operatorname{sym}_{-}^{0} \oplus \mathbb{R} \cdot J \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$\tau_{0}=0$	$A \in{\operatorname{sym}\left(\mathbb{R}^{6}\right) \oplus \mathfrak{m} \oplus \mathfrak{s u}(3)}_{\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}} \quad$ No vanishing condition

Table: Torsion classes of $\left(\mathfrak{g}_{A}, \varphi\right)$ [M. 2022]

From the torsion formulae:

- The Ricci curvature is $\operatorname{Ric}_{A}=\frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)-\operatorname{tr}\left(S(A)^{2}\right) e^{7} \otimes e^{7}$ [Arroyo, 2013]. The Lie algebra $\left(\mathfrak{g}_{A}, \varphi\right)$ does not induce an Einstein metric if $\left.e_{7}\right\lrcorner \tau_{1}=0$.

From the torsion formulae:

- The Ricci curvature is $\operatorname{Ric}_{A}=\frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)-\operatorname{tr}\left(S(A)^{2}\right) e^{7} \otimes e^{7}$ [Arroyo, 2013]. The Lie algebra $\left(\mathfrak{g}_{A}, \varphi\right)$ does not induce an Einstein metric if $\left.e_{7}\right\lrcorner \tau_{1}=0$.
- Notice that $\tau_{3}=0$ implies $\tau_{0}=0$. There does not exist an $\left(\mathfrak{g}_{A}, \varphi\right)$ with torsion strictly in one of the following classes:
(i) \mathcal{W}_{1} (in this class $\operatorname{Scal}(g)=\frac{28}{9} \tau_{0}^{2}$, but $\left(\mathfrak{g}_{A}, g\right)$ is either flat or $\operatorname{Scal}(g)<0[$ Milnor, 1976]).

From the torsion formulae:

- The Ricci curvature is $\operatorname{Ric}_{A}=\frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)-\operatorname{tr}\left(S(A)^{2}\right) e^{7} \otimes e^{7}$ [Arroyo, 2013]. The Lie algebra $\left(\mathfrak{g}_{A}, \varphi\right)$ does not induce an Einstein metric if $\left.e_{7}\right\lrcorner \tau_{1}=0$.
- Notice that $\tau_{3}=0$ implies $\tau_{0}=0$. There does not exist an $\left(\mathfrak{g}_{A}, \varphi\right)$ with torsion strictly in one of the following classes:
(i) \mathcal{W}_{1} (in this class Scal $(g)=\frac{28}{9} \tau_{0}^{2}$, but $\left(\mathfrak{g}_{A}, g\right)$ is either flat or Scal $(g)<0$ [Milnor, 1976]).
(ii) $\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ (If M is connected this class reduces to either \mathcal{W}_{1} or \mathcal{W}_{2} [Martin Cabrera-Monar-Swann, 1996])

From the torsion formulae:

- The Ricci curvature is $\operatorname{Ric}_{A}=\frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)-\operatorname{tr}\left(S(A)^{2}\right) e^{7} \otimes e^{7}$ [Arroyo, 2013]. The Lie algebra $\left(\mathfrak{g}_{A}, \varphi\right)$ does not induce an Einstein metric if $\left.e_{7}\right\lrcorner \tau_{1}=0$.
- Notice that $\tau_{3}=0$ implies $\tau_{0}=0$. There does not exist an $\left(\mathfrak{g}_{A}, \varphi\right)$ with torsion strictly in one of the following classes:
(i) \mathcal{W}_{1} (in this class $\operatorname{Scal}(g)=\frac{28}{9} \tau_{0}^{2}$, but $\left(\mathfrak{g}_{A}, g\right)$ is either flat or Scal $(g)<0$ [Milnor, 1976]).
(ii) $\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ (If M is connected this class reduces to either \mathcal{W}_{1} or \mathcal{W}_{2} [Martin Cabrera-Monar-Swann, 1996])
(iii) $\mathcal{W}_{1} \oplus \mathcal{W}_{4}$ (If φ is invariant then $\mathcal{W}_{1} \oplus \mathcal{W}_{4}$ reduces to either \mathcal{W}_{1} or \mathcal{W}_{4}).

From the torsion formulae:

- The Ricci curvature is $\operatorname{Ric}_{A}=\frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)-\operatorname{tr}\left(S(A)^{2}\right) e^{7} \otimes e^{7}$ [Arroyo, 2013]. The Lie algebra $\left(\mathfrak{g}_{A}, \varphi\right)$ does not induce an Einstein metric if $\left.e_{7}\right\lrcorner \tau_{1}=0$.
- Notice that $\tau_{3}=0$ implies $\tau_{0}=0$. There does not exist an $\left(\mathfrak{g}_{A}, \varphi\right)$ with torsion strictly in one of the following classes:
(i) \mathcal{W}_{1} (in this class $\operatorname{Scal}(g)=\frac{28}{9} \tau_{0}^{2}$, but $\left(\mathfrak{g}_{A}, g\right)$ is either flat or Scal $(g)<0$ [Milnor, 1976]).
(ii) $\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ (If M is connected this class reduces to either \mathcal{W}_{1} or \mathcal{W}_{2} [Martin Cabrera-Monar-Swann, 1996])
(iii) $\mathcal{W}_{1} \oplus \mathcal{W}_{4}$ (If φ is invariant then $\mathcal{W}_{1} \oplus \mathcal{W}_{4}$ reduces to either \mathcal{W}_{1} or \mathcal{W}_{4}).
(iv) $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{4}(\ldots$? $)$

From the torsion formulae:

- The Ricci curvature is $\operatorname{Ric}_{A}=\frac{1}{2}\left[A, A^{t}\right]-\operatorname{tr}(A) S(A)-\operatorname{tr}\left(S(A)^{2}\right) e^{7} \otimes e^{7}$ [Arroyo, 2013]. The Lie algebra $\left(\mathfrak{g}_{A}, \varphi\right)$ does not induce an Einstein metric if $\left.e_{7}\right\lrcorner \tau_{1}=0$.
- Notice that $\tau_{3}=0$ implies $\tau_{0}=0$. There does not exist an $\left(\mathfrak{g}_{A}, \varphi\right)$ with torsion strictly in one of the following classes:
(i) \mathcal{W}_{1} (in this class Scal $(g)=\frac{28}{9} \tau_{0}^{2}$, but $\left(\mathfrak{g}_{A}, g\right)$ is either flat or Scal $(g)<0$ [Milnor, 1976]).
(ii) $\mathcal{W}_{1} \oplus \mathcal{W}_{2}$ (If M is connected this class reduces to either \mathcal{W}_{1} or \mathcal{W}_{2} [Martin Cabrera-Monar-Swann, 1996])
(iii) $\mathcal{W}_{1} \oplus \mathcal{W}_{4}$ (If φ is invariant then $\mathcal{W}_{1} \oplus \mathcal{W}_{4}$ reduces to either \mathcal{W}_{1} or \mathcal{W}_{4}).
(iv) $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{4}(\ldots$? $)$
- The closed case

$$
\tau_{0}=0 \quad \tau_{1}=0 \quad \text { and } \quad \tau_{3}=0 \Leftrightarrow A=S_{+}(A)+C_{+}(A) \in \mathfrak{s l}\left(\mathbb{C}^{3}\right)
$$

The coclosed case

$$
\tau_{2}=0 \quad \text { and } \quad \tau_{1}=0 \Leftrightarrow A=S_{-}(A)+\frac{\operatorname{tr}(J A)}{6} J+C_{+}(A) \in \mathfrak{s p}\left(\mathbb{R}^{6}\right)
$$

Definition

The Lie algebra \mathfrak{g} is called a unimodular Lie algebra if $\operatorname{tr}(\operatorname{ad}(u))=0$ for every $u \in \mathfrak{g}$. A lattice Γ of a Lie group G is a discrete subgroup $\Gamma \subset G$, such that the quotient $\Gamma \backslash G$ is compact.

Definition

The Lie algebra \mathfrak{g} is called a unimodular Lie algebra if $\operatorname{tr}(\operatorname{ad}(u))=0$ for every $u \in \mathfrak{g}$. A lattice Γ of a Lie group G is a discrete subgroup $\Gamma \subset G$, such that the quotient $\Gamma \backslash G$ is compact.

If the Lie group G admits a lattice then it is unimodular [Milnor, 1976].

Definition

The Lie algebra \mathfrak{g} is called a unimodular Lie algebra if $\operatorname{tr}(\operatorname{ad}(u))=0$ for every $u \in \mathfrak{g}$. A lattice Γ of a Lie group G is a discrete subgroup $\Gamma \subset G$, such that the quotient $\Gamma \backslash G$ is compact.

If the Lie group G admits a lattice then it is unimodular [Milnor, 1976].

Class	Vanishing torsion	Bracket relation
$\mathcal{W}=\{0\}$	$\tau_{0}=0, \tau_{1}=0, \tau_{2}=0, \tau_{3}=0$	$A \in \mathfrak{s u}(3)$
\mathcal{W}_{2}	$\tau_{0}=0, \tau_{1}=0, \tau_{3}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \mathfrak{s u}(3)$
\mathcal{W}_{3}	$\tau_{0}=0, \tau_{1}=0, \tau_{2}=0$	$A \in \operatorname{sym}_{-}^{0} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{1} \oplus \mathcal{W}_{3}$	$\tau_{1}=0, \tau_{2}=0$	$A \in \operatorname{sym}_{-}^{0} \oplus \mathbb{R} \cdot J \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{2} \oplus \mathcal{W}_{3}$	$\tau_{0}=0, \tau_{1}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \operatorname{sym}_{-}^{0} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}$	$\tau_{1}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \operatorname{sym}_{-}^{0} \oplus \mathbb{R} \cdot J \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$	$\tau_{0}=0$	$A \in \operatorname{sym}_{+}^{0} \oplus \operatorname{sym}_{-}^{0} \oplus \mathfrak{m} \oplus \mathfrak{s u}(3)$
$\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$	No vanishing condition	$A \in \operatorname{sym}_{+}^{0} \oplus \operatorname{sym}_{-}^{0} \oplus \mathbb{R} \cdot J \oplus \mathfrak{m} \oplus \mathfrak{s u}(3)$

The harmonicity of $\left(\mathfrak{g}_{A}, \varphi\right)$

The full torsion tensor of $\left(\mathfrak{g}_{A}, \varphi\right)$ is

$$
T=\frac{1}{2}\left(\begin{array}{c|c}
{[J, S(A)]+[J, C(A)]+\left(J A^{t}+A J\right)} & -J \alpha(A)^{\sharp} \\
\hline 0 & \operatorname{tr}(J A)
\end{array}\right)
$$

The Levi-Civita connection given by the left-invariant metric [Milnor, 1976] is:

$$
\nabla_{7} e_{7}=0, \quad \nabla_{i} e_{7}=-S(A)\left(e_{i}\right), \quad \nabla_{7} e_{i}=C(A)\left(e_{i}\right) \quad \text { and } \quad \nabla_{i} e_{j}=\left\langle S(A)\left(e_{i}\right), e_{j}\right\rangle e_{7}
$$

where $i, j=1, \ldots, 6$.

The harmonicity of $\left(\mathfrak{g}_{A}, \varphi\right)$

The full torsion tensor of $\left(\mathfrak{g}_{A}, \varphi\right)$ is

$$
T=\frac{1}{2}\left(\begin{array}{c|c}
{[J, S(A)]+[J, C(A)]+\left(J A^{t}+A J\right)} & -J \alpha(A)^{\sharp} \\
\hline 0 & \operatorname{tr}(J A)
\end{array}\right)
$$

The Levi-Civita connection given by the left-invariant metric [Milnor, 1976] is:

$$
\nabla_{7} e_{7}=0, \quad \nabla_{i} e_{7}=-S(A)\left(e_{i}\right), \quad \nabla_{7} e_{i}=C(A)\left(e_{i}\right) \quad \text { and } \quad \nabla_{i} e_{j}=\left\langle S(A)\left(e_{i}\right), e_{j}\right\rangle e_{7}
$$

where $i, j=1, \ldots, 6$.

Proposition [M. 2022]

The divergence of T is

$$
\operatorname{div} T=-\frac{1}{2} \operatorname{tr}(A) J^{*} \alpha(A)+\frac{1}{2} \theta(C(A)) J^{*} \alpha(A)-\frac{1}{2} \operatorname{tr}(A) \operatorname{tr}(J A) e^{7}
$$

Theorem [M. 2022]

The almost Abelian Lie algebra with G_{2}-structure $\left(\mathfrak{g}_{A}, \varphi\right)$ is harmonic, if and only if,

$$
\operatorname{tr}(A) \operatorname{tr}(J A)=0 \quad \text { and } \quad J C(A) J\left(\alpha^{\sharp}\right)=-\operatorname{tr}(A) \alpha^{\sharp} .
$$

In particular, φ is harmonic if its torsion belongs to one of the following classes:

$$
\begin{array}{rlll}
\{0\}, & \mathcal{W}_{2}, & \mathcal{W}_{3}, & \mathcal{W}_{4}, \\
\mathcal{W}_{1} \oplus \mathcal{W}_{3}, & \mathcal{W}_{2} \oplus \mathcal{W}_{4}, & \mathcal{W}_{3} \oplus \mathcal{W}_{4}, \\
\mathcal{W}_{2} \oplus \mathcal{W}_{3}, & \mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3} .
\end{array}
$$

Further, if φ is of type $\mathcal{W}_{1} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}$ and div $T=0$, then φ is of type $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ or $\mathcal{W}_{3} \oplus \mathcal{W}_{4}$.

- The torsion classes $\{0\}, \mathcal{W}_{2}, \mathcal{W}_{3}, \mathcal{W}_{4}$ and $\mathcal{W}_{2} \oplus \mathcal{W}_{3}$ are generically harmonic. Since τ_{0} is constant for Lie groups, then the torsion classes $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ and $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}$ are also harmonic.
- The torsion classes $\{0\}, \mathcal{W}_{2}, \mathcal{W}_{3}, \mathcal{W}_{4}$ and $\mathcal{W}_{2} \oplus \mathcal{W}_{3}$ are generically harmonic. Since τ_{0} is constant for Lie groups, then the torsion classes $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ and $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}$ are also harmonic.
- The almost Abelian Lie algebras $\left(\mathfrak{g}_{A}, \varphi\right)$ whose G_{2}-structure has torsion in the classes $\mathcal{W}_{2} \oplus \mathcal{W}_{4}$, and $\mathcal{W}_{3} \oplus \mathcal{W}_{4}$ are new examples of harmonic G_{2}-structures. However, these new examples $\left(\mathfrak{g}_{A}, \varphi\right)$ do not admit a lattice.
- The torsion classes $\{0\}, \mathcal{W}_{2}, \mathcal{W}_{3}, \mathcal{W}_{4}$ and $\mathcal{W}_{2} \oplus \mathcal{W}_{3}$ are generically harmonic. Since τ_{0} is constant for Lie groups, then the torsion classes $\mathcal{W}_{1} \oplus \mathcal{W}_{3}$ and $\mathcal{W}_{1} \oplus \mathcal{W}_{2} \oplus \mathcal{W}_{3}$ are also harmonic.
- The almost Abelian Lie algebras $\left(\mathfrak{g}_{A}, \varphi\right)$ whose G_{2}-structure has torsion in the classes $\mathcal{W}_{2} \oplus \mathcal{W}_{4}$, and $\mathcal{W}_{3} \oplus \mathcal{W}_{4}$ are new examples of harmonic G_{2}-structures. However, these new examples $\left(\mathfrak{g}_{A}, \varphi\right)$ do not admit a lattice.
- $\left(\mathrm{G}_{2}\right.$-structure with torsion in $\left.\mathcal{W}_{2} \oplus \mathcal{W}_{3} \oplus \mathcal{W}_{4}\right)$ For

$$
A e_{1}=A e_{2}=0, \quad A e_{3}=e_{5}, \quad A e_{4}=-e_{6}, \quad A e_{5}=-e_{3}, \quad A e_{6}=e_{4}
$$

we have
$\tau_{0}=0, \quad \tau_{1}=4 e^{2}, \quad \tau_{2}=-\frac{1}{3}\left(e^{36}+e^{45}-4 e^{17}\right) \quad$ and $\quad \jmath\left(\tau_{3}\right)=-4\left(e^{1} \otimes e^{7}+e^{7} \otimes e^{1}\right)$.
And $\alpha^{\sharp}=4 e_{2}$, since $J \alpha^{\sharp} \in \operatorname{ker} A$ then $\operatorname{div} T=0$.

Many thanks

