
STABILITY OF PULLBACKS OF SHEAVES ALONG TORIC FIBRATIONS
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Abstract. Locally trivial fibrations and blowups are examples of fibrations. Given a reflexive

sheaf over a polarized toric variety, we study the stability of its reflexive pullback along a toric

fibration. Secondly, we will focus on the case of blowups along irreducible subvarieties of dimen-

sion greater than or equal to one.

These are the notes of a talk given at “Workshop BRIDGES: Special geometries and gauge theo-

ries”. This talk is based on the paper [NT22].

1. Slope stability and Hermitian Yang-Mills connections

Thenotion of stability was first introduced byMumford [Mum63] in his study of moduli spaces

of vector bundles on curves. It was generalized in higher dimension by Takemoto [Tak72]. A

vector bundle, or more generally a torsion-free sheaf E on a complex projective varietyX is said

to be slope stable (resp. semistable) with respect to a polarization L, if for any proper coherent

subsheaf F of E with 0 < rk(F ) < rk(E ), one has µL(F ) < µL(E ) (resp. µL(F ) ≤ µL(E ))
where the slope µL(E ) of E with respect to L is given by

µL(E ) =
c1(E ) · Ln−1

rk(E )
.

We say that E is polystable if it is a direct sum of stable subsheaves of the same slope. Finally, E
is said to be unstable with respect to L, if there is F ⊊ E such that µL(F ) > µL(E ).

Remark 1.1. If X is a compact Kähler manifold of dimension n with a Kähler metric ω, then the

ω-slope of a torsion free sheaf E on X is defined by:

µω(E ) =
degω(E )

rk(E )
=

1

rk(E )

∫
X
c1(E ) ∧ ωn−1.

Let X be a compact Kähler manifold of dimension n with a Kähler metric ω. We denote by

Λω the adjoint of the Lefschetz operator.

Definition 1.2. Let E be a holomorphic vector bundle over X . A hermitian metric h on E is

Hermite-Einstein with respect to ω if the curvature Fh of the corresponding Chern connection

satisfies

Λω(ıFh) = c · IdE

for some constant c. If h is some hermitian metric on the smooth complex vector bundle under-

lying E , a hermitian connection A on (E , h) is said to be hermitian Yang-Mills (HYM) if

F 0,2
A = 0 and Λω(ıFA) = c · IdE .

By the Donaldson-Uhlenbeck-Yau theorem [UY86] (or Kobayashi-Hitchin correspondence), if

L is a polarization on X , then the existence of HYM connections on E with respect to ω ∈
c1(L) is related to the polystability of E with respect to L. It is then natural to understand how

HYM connections, or polystable bundles behave with respect to natural maps between complex

polarized manifold.

In the case of immersions, the Metha-Ramanathan theorem [MR84, Theorem 4.3] asserts that

the restriction of a slope (semi)stable torsion-free sheaf to a generic complete intersection of high
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degree remains slope (semi)stable. In this document, we address to the problem of pulling-back

(semi)stable reflexive sheaves along fibrations.

Remark 1.3. According to Hartshorne [Har80], reflexive sheaves can be seen as vector bundles

with singularities and their study gives a better description of vector bundles.

2. Existence of HYM connections

In the paper [ST22], Sektnan and Tipler studied a similar problem. They considered the fol-

lowing problem. Let π : (X,H) −→ (B,L) be a holomorphic submersion between polarized

compact complex manifolds such that:

• for any b ∈ B, Xb = π−1(b) is smooth;

• L is an ample line bundle on B;

• H is a relatively ample line bundle onX , i.e, for any b ∈ B,H|Xb
is an ample line bundle

on Xb.

For k ≫ 0, Lk = H ⊗ (π∗L)k defines an ample line bundle on X .

Theorem 2.1 ([ST22, Theorem 1.1]). Suppose that E −→ B is a holomorphic vector bundle admit-
ting a HYM connection with respect toωB ∈ c1(L). Then for anyωX ∈ c1(H), there are connections
Ak on π∗E which are HYM with respect to ωX + kπ∗ωB for all k ≫ 0.

If E is simple and strictly semistable (i.e semistable but not stable) with respect to L, there is
a Jordan-Hölder filtration

0 ⊆ E0 ⊆ E1 ⊆ . . . ⊆ Eℓ = E

by semistable subsheaves with stable quotient Gi = Ei/Ei−1 for i = 1, . . . , ℓ. We set

Gr(E) :=

ℓ⊕
i=1

Gi and E :=

{⊕
i∈I

Gi : ∅ ⊊ I ⊊ {1, . . . , ℓ}

}
.

Remark 2.2. By definition of E , there is no HYM connection with respect to any ωB ∈ c1(L).

If Gr(E ) is locally free, according to the sign of the leading order term in the k-expansion of

µLk
(π∗E )− µLk

(π∗F ) for F ∈ E, Sektnan-Tipler in [ST22, Theorem 1.4] gave a condition for

the existence of HYM connection Ak on π∗E with respect to ωX + kπ∗ωB for k ≫ 0 where

ωB ∈ c1(L) and ωX ∈ c1(H).

In the paper [NT22], we studied how behave stability when we consider singular varieties and

reflexive sheaves in the toric case.

3. Eqivariant reflexive sheaves on toric varieties

3.1. Toric varieties and divisors. An n-dimensional toric variety is an irreducible variety X
containing a torus T ≃ (C∗)n as a Zariski open subset such that the action of T on itself by

multiplication extends to an algebraic action of T on X .

Example 3.1.

(1) X = Cn
with T = (C∗)n,

(2) X = Pn
with T ∼= (C∗)n,

(3) X = {(x, y) ∈ C2 : x3 − y2 = 0} with T = {(t2, t3) : t ∈ C∗}.

LetN be a rank n lattice andM be its dual with pairing ⟨ · , · ⟩ : M ×N −→ Z. ThenN is the

lattice of one-parameter subgroups of the n-dimensional complex torus TN := N ⊗Z C∗
. Note

thatM is the character lattice of TN . We denote by χm : TN −→ C∗
the character corresponding

to m ∈M and we set NR = N ⊗Z R.
A fan Σ in NR is a set of rational strongly convex polyhedral cones in NR such that:
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• Each face of a cone in Σ is also a cone in Σ;
• The intersection of two cones in Σ is a face of each.

We will denote τ ⪯ σ the inclusion of a face τ in σ ∈ Σ. A cone σ inNR is smooth if its minimal

generators form part of a Z-basis of N . We say that σ is simplicial if its minimal generators are

linearly independent over R. A fan Σ is smooth (resp. simplicial) if every cone σ in Σ is smooth

(resp. simplicial).
For σ ∈ Σ, let Uσ = Spec(C[Sσ]) where C[Sσ] is the semi-group algebra of

Sσ = σ∨ ∩M = {m ∈M : ⟨m, u⟩ ≥ 0 for all u ∈ σ} .

If σ, σ′ ∈ Σ, we have Uσ ∩ Uσ′ = Uσ∩σ′ . We denote by XΣ the toric variety associated to a fan

Σ;XΣ is obtained by gluing the affine charts (Uσ)σ∈Σ. The varietyXΣ is normal and its torus is

T = N ⊗Z C∗
. In general, every normal toric variety comes from a fan [CLS11, Corollary 3.1.8].

By [CLS11, Theorem 3.1.19], the toric variety XΣ is smooth (resp. Q-factorial) if and only if

the fan Σ is smooth (resp. simplicial).

LetX be the toric variety associated to a fanΣ inNR. For any σ ∈ Σ, there is a point γσ ∈ Uσ

called the distinguished point of σ such that the torus orbit O(σ) corresponding to σ is given by

O(σ) = T · γσ . By the Orbit-Cone-Correspondence [CLS11, Theorem 3.2.6], there is a bijective

correspondence

{Cones σ in Σ} ←→ {T − orbits in X}
σ ←→ O(σ)

with dimO(σ) = dimNR − dimσ.

Notation 3.2. We denote by Σ(1) the set of one-dimensional cones of Σ and for any σ ∈ Σ, we
set σ(1) = Σ(1) ∩ {τ ∈ Σ : τ ⪯ σ}. For ρ ∈ Σ(1), we denote by

• uρ ∈ N the minimal generator of ρ;
• Dρ the closure in the Zariski topology of O(ρ).

So, Dρ defines an irreducible invariant divisor of X .

3.2. Equivariant reflexive sheaves. Let X be a smooth toric variety associated to a fan Σ in

NR. Recall that a reflexive sheaf onX is a coherent sheaf E that is canonically isomorphic to its

double dual E ∨∨
.

Let θ : T × X −→ X be the action of T on X , µ : T × T −→ T the group multiplication,

p2 : T × X −→ X the projection onto the second factor and p23 : T × T × X −→ T × X
the projection onto the second and the third factor. We call a sheaf E on X equivariant if it is
equipped with an isomorphism Φ : θ∗E → p∗2E such that

(µ× IdX)∗Φ = p∗23Φ ◦ (IdT × θ)∗Φ .

Perling [Per04] gave a description of torus equivariant reflexive sheaves over toric varieties in

terms of combinatorial data:

Definition 3.3. A family of filtrations E is the data of a finite dimensional vector space E and

for each ray ρ ∈ Σ(1), an increasing filtration (Eρ(i))i∈Z of E such that Eρ(i) = {0} for i≪ 0
and Eρ(i) = E for some i.

To a family of filtrationsE :=
(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
, we can assign an equivariant reflexive

sheaf E := K(E). The morphisms between families of filtrations are linear maps preserving the

filtrations. Then, by [Per04, Theorem 5.18], the functor K induces an equivalence of categories

between the families of filtrations and equivariant reflexive sheaves over X .

Remark 3.4. The vector space E can be seen as the fiber E (x0) where x0 is the identity element

of T and we define the vector subspaces {Eρ(j)} as follows: let γρ ∈ O(ρ) be the distinguished



4 ACHIM NAPAME

point, we set

Eρ(j) =

{
e ∈ E : lim

t·x0→γρ,t∈T
χm(t)(t · e) exists

}
where t · e is an element of E (t · x0) andm ∈M satisfies ⟨m,uρ⟩ = j.

3.3. Stability of equivariant reflexive sheaves. Let E be an equivariant reflexive sheaf on a

normal toric variety X given by the family of filtrations

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
. By [Koo11,

Corollary 3.18], the first Chern class of E is given by

c1(E ) = −
∑

ρ∈Σ(1)

ιρ(E )Dρ where ιρ(E ) =
∑
j∈Z

j (dim(Eρ(j))− dim(Eρ(j − 1))).

Therefore, for any polarization L ∈ Amp(X),

µL(E ) = − 1

rk(E )

∑
ρ∈Σ(1)

ιρ(E )degL(Dρ).

According to [Koo11, Proposition 4.13] and [HNS22, Proposition 2.3], to study the stability of E ,

it is enough to test slope inequalities for equivariant and reflexive saturated subsheaves. These

subsheaves are described by families of filtrations (F, {Eρ(j)∩F})where F is a vector subspace

of E.

Notation 3.5. We denote by EF the subsheaf of E given by (F, {Eρ(j) ∩ F}).

Lemma 3.6. The set {µL(EF ) : F ⊆ E with 0 < dimF < dimE} is finite.

4. Pullbacks along fibrations

Let π : X ′ −→ X be a fibration between Q-factorial projective toric varieties. Let L be

an ample line bundle on X and L′
a relatively ample line bundle on X ′

. For ε ∈ Q>0 small,

Lε = π∗L + εL′
define a Q-ample divisor on X ′

. For a reflexive sheaf E on X , we denote by

E ′ := (π∗E )∨∨ its reflexive pullback on X ′
.

Let Σ and Σ′
be respectively the fans of X and X ′

. If E is given by

(
E, {Eρ(j)}ρ∈Σ(1), j∈Z

)
,

then E ′
is given by

(
Ẽ, {Ẽρ′(j)}ρ′∈Σ′(1), j∈Z

)
where Ẽ = E (cf. [NT22, Section 3.1]).

If F is a vector subspace of E, we have

µLε(E
′)− µLε(E

′
F ) =

(
µLε(E

′)− µLε((π
∗EF )

∨∨)
)
+
(
µLε((π

∗EF )
∨∨)− µLε(E

′
F )

)
(1)

where {
µLε((π

∗EF )
∨∨)− µLε(E

′
F ) = o(εr)

µLε(E
′)− µLε((π

∗EF )
∨∨) = C(µL(E )− µL(EF ))ε

r + o(εr)

with C > 0. Therefore, according to Lemma 3.6, it is straightforward to show that: if E is stable

(resp. unstable) with respect to L, then there is ε0 ∈ Q>0 such that for all ε ∈ (0, ε0) ∩Q, E ′
is

stable (resp. unstable) with respect to Lε.

We now consider the case where E is an equivariant strictly semistable sheaf on (X,L). There

is a Jordan-Hölder filtration

0 = E1 ⊆ E2 ⊆ . . . ⊆ Eℓ = E

by slope semistable subsheaves with stable quotients of same slope as E . We denote byGr(E ) :=⊕ℓ−1
i=1 Ei+1/Ei the graded object of E and E the set of equivariant and saturated reflexive sub-

sheaves F ⊆ E arising in a Jordan-Hölder filtration of E . Recall that a locally free semistable

sheaf is called sufficiently smooth if its graded object is locally free.

For two coherent sheavesF1 andF2 onX
′
, we will write µ0(F1) < µ0(F2) (resp. µ0(F1) ≤

µ0(F2) or µ0(F1) = µ0(F2)) when the coefficient of the smallest exponent in the expansion in

ε of µLε(F2)− µLε(F1) is strictly positive (resp. greater or equal to zero or equal to zero).
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Theorem 4.1 ([NT22, Theorem 1.3]). Let E be an equivariant locally free and sufficiently smooth
strictly semistable sheaf on (X,L). Then there is ε0 > 0 such that for all ε ∈ (0, ε0) ∩ Q, the
reflexive pullback E ′ := (π∗E )∨∨ on (X ′, Lε) is:

(1) stable iff for all F ∈ E, µ0((π
∗F )∨∨) < µ0(E ′),

(2) strictly semistable iff for all F ∈ E, µ0((π
∗F )∨∨) ≤ µ0(E ′) with at least one equality,

(3) unstable iff there is one F ∈ E with µ0((π
∗F )∨∨) > µ0(E ′).

Remark 4.2. In Theorem 4.1 we made the assumptions E and Gr(E ) are locally free in order to

have

(π∗EF )
∨∨ = E ′

F (2)

when F satisfies µL(EF ) = µL(E ). In the case where π is a locally trivial fibration, then the

assumptions on E and Gr(E ) to be locally free in Theorem 4.1 are not necessary because (2) is

true for any vector subspace F ⊆ E.

5. Pullbacks along blowups

Let X be an n-dimensional smooth projective variety with n ≥ 3 and let Z be a smooth

irreducible subvariety of dimension ℓ with 1 ≤ ℓ ≤ n − 2. We denote by π : X ′ −→ X the

blowup of X along Z . Let E be a reflexive sheaf on X , we have:

µLε((π
∗E )∨∨) = µL(E )−

(
n− 1

ℓ− 1

)
µL|Z (E|Z)ε

n−ℓ + o(εn−ℓ). (3)

Theorem 5.1 ([NT22, Theorem 1.12]). Let (X,L) be a smooth polarised toric variety. Let π :
X ′ −→ X be the blowup along an invariant irreducible subvariety Z ⊆ X of dimension ℓ with
1 ≤ ℓ ≤ n − 2. We set Lε = π∗L − εE where E is the exceptional divisor of π. Let E be an
equivariant reflexive sheaf that is strictly semistable on (X,L). We assume that for all F ∈ E,
(π∗F )∨∨ is saturated in E ′ := (π∗E )∨∨ and that

µL|Z (E|Z) < µL|Z (F|Z),

then there is ε0 > 0 such that for all ε ∈ (0, ε0) ∩Q, the pullback E ′ is stable on (X ′, Lε).

Example 5.2. LetX = P(OP1⊕OP1⊕OP1(1)) and pr : X −→ P1
be the projection to the base

P1
. The tangent sheaf TX is strictly semistable with respect to L = pr∗ OP1(1)⊗ OX(3).

Let C1, C2 be two invariant curves (by the action of the torus of X) such that

pr(C1) = {pt} and pr(C2) = P1.

For i ∈ {1, 2}, we set πi : Xi = BlCi(X) −→ X and Ei = (π∗TX)∨∨. We denote by Di the

exceptional divisor of πi. We have:

(1) There is ε0 > 0 such that E1 is stable with respect to π∗L− εD1 for any ε ∈ (0, ε0)∩Q.

(2) There is ε0 > 0 such that E2 is unstable with respect to π
∗L−εD2 for any ε ∈ (0, ε0)∩Q.
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