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H C SO(n) closed and connected = SO(n)/H is a normal homogeneous
Riemannian n-manifold with canonical bi-invariant metric (A, B) := —tr(AB).
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Geometric structures: H-structures characterized by their stabilized tensors

® Given an H-structure Q C Fr(M), a tensor field £ € [(TP9(TM)) is said to be
stabilized by H if, for any adapted H-coframe u € Q one has
H C Stab(u™'.£) C GL(n,R).

® |n what follows, we shall be interested in H-structures that are completely
characterized by their stabilized tensors. This amounts to assuming that the group
H is the stabilizer of one or several tensors on R", meaning H = Stab(&,) for
some element & = ((&)1, - .-, (€0)k) in a subspace V < &T79(R"),
V=WVid...® Vi with V; < TP 9%(R"). Then Q corresponds bijectively to a
geometric structure £ modelled on &,: for each x € M, there exists a coframe
u: TxM — R" identifying £(x) and &.

® eg.: for H= U(m) C SO(2m) we can take & = (go, Jo) € X @ End(R®™), where
& and J, are the standard flat metric and complex structure, respectively; for
H = G2 C SO(7), we can take & = @o € Q3(R7) the standard positive 3-form, etc.



Infinitesimal deformations

The canonical right GL(n,R)-action on tensors induces an infinitesimal action of
endomorphisms A € I'(End(TM)) on elements £ € ['(7?9(TM)) given by

_ Y tA
Acti= 2| &

Using the metric g, we let A; := g Al and we decompose A= S + C € T*(M) & Q*(M),

where S; = 2(Aj + Aji) and Cj = 3(Aj — Aj).

Lemma

For all A, B € T(End(TM)) and & € T(T"9(TM)), the diamond operator < satisfies:
(i) Ao B=—[A, B].

(i) Ao(Bo&)—Bo(Acg) =—[A B]o¢.

(ii) If € € T(T%9(TM)) is a symmetric (resp. alternating) tensor, then so is Ao €.
(iv) go&=(q—p).
(vV) A=S+ C e (M) Q*(M) = Aog =2S; in particular, ker(- o g) = Q.

(vi) Aovol, = tr(A)volg; in particular, ker(- o volg) = 3 ® Q2.

(vii) If D € Q*(M) then (Do &, &), = 0.

(viii) If D € Q3 (M) then (Ac€,Do &)y = —(Do(A0E),E)s.




The diamond operator and compatible H-structures

Now suppose @ C Fr(M, g) is a compatible H-structure. Then we get a corresponding
H-module decomposition on A*(T*M) ~ so( TM):

N=ANoN, N ~bhy and AL ~mg.

We shall write Qf := (A7) and Q3 := I'(A%). Then, splitting out the trivial submodule
Q° of ¥?(M) spanned by the Riemannian metric g, we have

MEnd(TM)) ~ Q@ X5 @ Qf © Q4.

Lemma
The following hold:
(i) If€ € T(TP9(TM)) is stabilized under the action of H, then Qf C ker(- o ).
(i) If H= Stab(&,), so that Q corresponds to a geometric structure § = (&1, .. ., &)
modelled on &, then
Qf = ker(- 0 &) = ker(- 0 £1) N ... Nker(- o &).

(iii) If H= Stabso(n)(fo), then
Qj = ker(- 0 £) N Q2.




Intrinsic torsion and diamond operator

Lemma
Let Q C Fr(M, g) be a compatible H-structure. If ¢ € [(TP9(TM)) is stabilized under
the action of H, then

Vx€E=Txo& VXeX(M), (1.4)

In particular, if H = Stabgo(m (o) and Q is thus determined by a geometric structure §
modelled on &, then there are constants c,¢ > 0, depending only on (M, g) and H, such
that

e TP <|VEP < el TP (1.5)

If furthermore there is ¢ > 0 such that (Ao &, Bo &) = c(A, B), for all A, B € Q% (M)
(e.g. if m is an irreducible H-module), then in fact

V& = ¢| TI. (1.6)




Inner product relations

Lemma
Suppose H = Stabson)(§o) and & is a compatible H-structure on (M, g). Let

m=m; ... Hmk be an orthogonal decomposition of m, with respect to the bi-invariant

metric (A, B) = —tr(AB), into non-equivalent, irreducible Adso(n)(H)-submodules.
Then:

(i) 3N\ € Ry such that, for all A, B € Q2 (M),

k
(Aog,Bo&) =Y (A, By,

where A; := 7m;(A), Bi := mm;(B), fori =1,... k.
(i) In particular,

(Co(Co&),Dot) = Z)\ ([C,D],C), VC,DeQ%4(M), (1.8)

and this equals zero if \1 = ... = ¢ (e.g. when m is irreducible).




Example: U(m) case

Consider the case where H = U(m) = Stabgoem)(Jo) C SO(2m). Then
m = u(m)®™ = {A € s0(n) : AJo = —J,A} is irreducible, and for any compatible
U(m)-structure € = J on (M?™, g), we can compute, for all A, B € Q%(M),

(Ao J,BoJ) = ([A J],[B,J]) = (2AJ, (—2)JB) = 4tr(AJJB)
= 4(A, B).
Moreover,
Vxd = (TxoJ) = —[Tx, J] = 2JTx, VX € X(M),
since Tx € Qi(m)L ~ {A € so(M): AJ = —JA}. Thus,

Tx = —%JVXJ, VX € X(M).

In particular,
|VJ]> = 4|T).

Moreover, - © J maps 1 into itself, so that VxJ € Qu(m L. VX € X(M).



Rough Laplacian and the diamond operator

Write A := —V™*V, so that at the center of normal coordinates A = V, V.

Lemma

Suppose Q C Fr(M, g) is a compatible H-structure with torsion T. If £ € T(TP9(TM))
is stabilized by H then

Al =divg To &+ Tro (Tro &), (1.10)
where (divg T); := Vi Tk € Qa(M).
In particular, if H = Stabgo(n)(§0) and Q is then determined by a geometric structure £

modelled on &, then 3c > 0, depending only on (M, g) and H, such that if div, T =0
then

Ag] < c|vel. (1.11)
If furthermore there is ¢ > 0 such that (Ao ¢, Bo &) = c(A, B) for all A, B € Q4 (M), i.e.
ifc:=XM =...= X\ (e.g. ifm is an irreducible H-module), then the decomposition

(1.10) of AE is orthogonal.




General flows of H-structures

When M admits a H-structure £ defined by one or several tensor fields which are
stabilized by H C SO(n), we saw in particular that Q} is a subspace of ker(- ¢ £).
Consequently, a general GL(n, R)-variation of £ can be written as:

%g =Aot, A=A(t)=S(t)+ C(t), S(t)eX’ C(t)eQc. (1.12)

Moreover, if {£(t)}teis0 is a family of H-structures evolving under (1.12), and if g(t) is
the unique Riemannian metric on M" determined by £(t), then

%g(t) = A(t) o g(t) = 25(¢).

In particular, the flow is isometric iff S(t) = 0.



Dirichlet energy functionals

Suppose (M, g) is closed and let £ be a compatible geometric H-structure. Consider the
following energy functionals:

1 1
EE) == [ |Tefvoly and D€)== [ |VE[vol,.
2 Ju 2 Ju
Then, by previous lemmas, there are ¢, ¢ > 0 depending only on (M, g) and H such that

eE(&) < D(§) < c&(8).

Moreover, under the assumption that ¢ := A1 = ... = X, i.e. if there is ¢ > 0 such that
(Ao&,Bog) = c(A, B) for all A, B € Q4(M) (e.g. if m is an irreducible H-module), then

D(&) = c€(¢).



First variation of the Dirichlet energy

Lemma

Suppose that H = Stabgo(n)(&o) is such that A1 = ... = A\« (e.g. when m is an
irreducible H-module). If {£(t)} is a smooth family of compatible H-structures on
(M, g), with £(0) = £ and £ |i—o&(t) = C o &, for some C € Q,, then

q D(f(t)):—/(Cof,dingof)volg.
dt t=0 M

Thus, the energy D restricted to compatible H-structures on (M", g) has gradient
—div, T ¢ & at each point &.




Harmonic geometric structures

This motivates a natural harmonicity theory:

Definition
A family of compatible H-structures {£(t)}:er on (M, g), parameterised by a

non-degenerate interval | C R, is a solution to the harmonic flow of H-structures (or
harmonic H-flow for short) if the following evolution equation holds for every t € I:

9 e(t) = div T(1) o (2), (HF)
where T(t) denotes the torsion of £(t). Given a compatible H-structure & on (M", g), a
solution to the harmonic flow of H-structures with initial condition (or starting at) & is a
solution of (HF) defined for every t € [0, 70), for some 0 < 79 < oo, and such that

£(0) = &.

Definition

When £ is a compatible H-structure on (M", g), we say that £ is harmonic when it has
divergence-free torsion:
div, T = 0.




Some of the previous literature on harmonic structures
® The problem of fixing a metric g and looking for a “best” compatible H-structure
dates back to Calabi~Gluck (U(3)-structures on S®) and C. Wood in the 1990s;
Wood introduced the general notion of harmonicity from the point of view of
sections of twistor bundles. In the case H = U(m) C SO(2m), i.e. for an almost
complex structure J compatible with (M, g), the equation div, T = 0 becomes

[V*VJ,J]=0.

Of course, Kahler structures are absolute minimizers of the energy D but 3 various
absolute minimizers which are not Kahler (Bor-Lamoneda-Salvai '07).
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® More recent works include the Spin(7) case of the flow by Dwivedi-Loubeau—S3
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quaternion-Kahler structures by Fowdar-S4 Earp (2023).



Short-time existence and uniqueness of the harmonic flow

There is a natural isomorphism between 7 : Fr(M, g)/H — M and the associated bundle
Fr(M, g) xso(m) SO(n)/H, which fibrewise is an isometry with respect to the bi-invariant
metric on SO(n). The induced one-to-one correspondence between sections

o € I'(Fr(M, g)/H) and SO(n)-equivariant maps s : Fr(M, g) — SO(n)/H identifies
solutions to the harmonic section flow with SO(n)-equivariant solutions to the classical
harmonic map heat flow for maps Fr(M, g) — SO(n)/H, where the target space
SO(n)/H is considered with its normal homogeneous Riemannian manifold structure.

Theorem (Loubeau-Sa Earp (2019))

Given any smooth compatible H-structure & on (M", g), there is a maximal time

T = 7(&) € (0, 00] such that the harmonic H-flow with initial condition & admits a
unique smooth solution &(t) for t € [0, 7). Moreover, if T < oo then sup,, |V§(t)] — co
ast—rT.




Assumptions for our analytical results on the harmonic flow

® H = Stabso(n) (&), where & is an element of a r-dimensional SO(n)-submodule
V < @TP9(R"). Furthermore, we assume that H is such that A1 = ... = A, i.e.
there is ¢ > 0 such that (Ao &, Bo &) = c(A,B), VA, Bc Q4(M).

® Suppose (M", g) admits a compatible H-structure & and let {£(t)}:cpo,-) be a
solution to the harmonic H-flow on (M, g) with initial condition £(0) = &o:

0l =divg T o, &(0) = &.

® let 0 < ry < inj(M, g). Then, restricted to the geodesic ball B,,,(y) we can regard
& as a tensor defined on By, (0) x [0,7) C R" x [0,7) via normal coordinates. Fix
any 7o € (0,7) and a cut-off function ¢ € C°(B,,(0)) with ¢|5,, (o) = 1. For all
-
t € (0,70) and 0 < r < min{/70/2, rm}, we define
2

TO—F

V(r) =W, (1) ::/ V€[ k0,70 8° \/ det(g) dxdt.

To—4r2 JRP



e-regularity along the flow

Theorem (F-, Loubeau, Moreno, S& Earp (2022))

There exists a constant eg > 0, depending only on (M", g), the group H, and the energy
of the initial data such that, if W, .\(r) < €o, then

sup |VE* < 4(6r)7%

Psr(y,70)

where Psg is a parabolic neighbourhood, and the constant § > 0 depends only on the
geometry and initial data.

The main ingredients to prove this result are:
® Almost monotonicity formula: V0 < Ry < R2 < min{/70/2, rm} and YN > 1,

n C
V(R < CY(R) + € (N"(Ey + VE) + o ) (Re = Ru).
* Bochner-type estimate for e(¢) := 3|V¢[*:

(0: — D) e(€) < Cu(e()” +1).



An energy gap theorem
Theorem (F-, Loubeau, Moreno, S& Earp (2022))

Let (M", g) be a closed Riemannian n-manifold admitting a compatible H-structure.
Then there is a constant eo(M", g, H) > 0 such that if§ is a compatible harmonic
H-structure on (M", g) whose energy satisfies D(§) := 5 HV&H my < €o, then & is
actually torsion-free, i.e. V& = 0.

Proof.

If not true, then 3 sequence (£x)52; of harmonic H-structures inducing g such that
D(&k) — 0 as k — oo but V& # 0 for all k. By the e-regularity and Shi-type
estimates, it follows that for k > 1 we have that |[V™¢| is uniformly bounded Vm € No.
Therefore, up to taking a subsequence, & — £ in C*° and V& = 0. Since & is harmonic
and V¢ = 0, there is a uniform ¢ > 0 such that

A& — &) < c|V(& — )"

Combining this with integration by parts gives

/ V(g —)F = — / (6 — & AEx — €)) < cliée — Ellemon) / V(e — o).

Since & — £ as k — oo in smooth topology, we get a contradiction. |




A finite-time singularity result for the harmonic H-flow

Theorem (F-, Loubeau, Moreno, S& Earp (2022))

Let (M", g) be a closed oriented Riemannian n-manifold endowed with a compatible
H-structure € whose isometric homotopy class [€] does not contain any torsion-free
H-structure but

inf D(§) =0.

€€le]
Then there is a constant .(M, g, H) > 0 such that if & € [€] is such that D(&) < «,
then the harmonic H-flow starting at & develops a finite time singularity. Moreover, if
[0,7(&)) denotes the maximal existence interval for the solution, then 7(£0)" 2 < D(&);
in particular, 7(&) — 0 as D(&) — 0.




Example(s) of finite-time singularity for the harmonic H-flow

® M := T7 endowed with the standard Ga-structure o inducing the flat metric go.

® Frame bundle of (T7, g) is trivial and so is the twistor bundle
Fr(T7,g0)/G2 = T" x SO(7)/G2 = T" x RP’ of Ga-structures isometric to ¢o.

e - any Gg-structure ¢ isometric to o can be thought of as a map from T* to RP’,
and under such identification the standard Ga-structure o corresponds to a
constant map.

® Fix ro small enough so that the geodesic ball B(p, r0) C (T, go) is isometric to the
Euclidean ball B(0, ro) C R, and consider an isometric Go-structure ¢ € [[¢o]]
which is the constant map o outside B(p, ro). In particular, we can think of ¢
(restricted to B(p, r)) as a map from the 7-sphere S” to RP’. In this sense, the
isometric homotopy class of ¢ then corresponds to an element of
77(RP") = 717(S”) = Z, and ¢ € [¢o] if and only if such an element is the trivial
one. Choose ¢ such that its isometric homotopy class corresponds to any nonzero
element in 77(RP’) = Z. Up to a deformation within its isometric hotomopy class,
we can assume that ¢ is a smooth Ga-structure, which by construction is isometric

to o but [p] # 0 = [o].



Example(s) of finite-time singularity for the harmonic H-flow
® Vr € (0, ro), let ¢, be the Go-structure on T’ such that ¢r|x\g(p,r) = ¥o, and

Xhy

or(x) = ¢ ( ) , Vxé€B(p,r)~B(0,r) C R’.

r

® o, is isometric to o and @, € [¢] # 0 = [wo]. We compute the energy of ¢,:

2D(¢r) = / [V, |*(x)dx  (since @, = o outside B(p, r))
B(p,r)

2
/ \Y (‘P (XTrO)) ’ dx (by the def of ¢,)
B(p,r)

= rgrfz/ Vel (@) dx
B(p,r) r

=nhr I r VSD 2 y)ay Y ange o Valiables
0 a b C
B(p,ro)

=1;°rD(p). (since ¢ = o outside B(p, r))
In particular, D(¢,) — 0 as r — 0 and therefore

inf D(@) = 0.

@Ele]



Example(s) of finite-time singularity for the harmonic H-flow

® On the other hand, [¢] cannot contain any torsion-free Ga-structure, since any such
would correspond to a constant map from T to RP’ and [g] is non-trivial.

® Claim: For r < 1, the harmonic Ga-flow starting at ¢, has a finite time singularity.

® Indeed: if otherwise the flow ¢(t) with ¢(0) = ¢, exist for all time t > 0 then, since
r < 1, and thus D(p,) < 1, it follows from the e-regularity together with Shi-type
estimates that ¢(t) converges smoothly as t — oo to a divergence-free torsion
Ga-structure pos € [@r] = [¢]. In fact, if r < 1 is small enough, @o, would be
torsion-free because of the energy gap and the fact that the energy is non-increasing
along the flow. But ¢ being torsion-free implies that its homotopy class
corresponds to that of a constant map from T7 to RP’, contradicting the
non-triviality of [¢] # 0 = [¢o].

® Notice that although on the one hand the ¢, have arbitrarily small energy
D(pr) — 0 as r — 0, on the other hand the L>-norm of its torsion is blowing-up as
r—0:

||V<,0r||Loo(M) = r0r71HVga||Loc(B(p,,0)) —o00 asr—0.

Thus, this example also illustrates that a general long-time existence result for the
harmonic flow under the hypothesis of small initial energy should take into account
the L°°-norm of the initial torsion in the smallness condition.



Long-time existence under small initial energy

Theorem (F-, Loubeau, Moreno, S& Earp (2022))

Let (M", g) be a closed, oriented Riemannian n-manifold admitting a compatible
H-structure. Then for any given constant K > 0, there is a universal constant ¢(K) > 0,
depending only on K, the geometry (M, g) and H, such that if & is a compatible
H-structure on (M", g) satisfying

(i) [IV&lloo(my < K and

(it) D(é) := 3/ VEollizmy < (K),
then the harmonic H-flow with initial condition & exists for all time t > 0 and converges
smoothly to a torsion-free H-structure as t — cc.




Long-time existence under small initial torsion

Theorem (F-, Loubeau, Moreno, S& Earp (2022))

Let (M", g) be a closed, oriented Riemannian n-manifold admitting a compatible
H-structure &. Then, for every 6 > 0 there is e = (6, M", g, H) > 0 such that if
[IV&o||Loo(my < € then the harmonic H-flow &(t) starting from & exists for all time t > 0
and converges smoothly to a harmonic H-structure £~ which furthermore satisfies

I VE€oollLoo(my < 6.




Stability of torsion-free structures along the flow

Theorem (F-, Loubeau, Moreno, S& Earp (2022))

Let (M", g) be a closed, oriented Riemannian n-manifold admitting a compatible
H-structure. Then the following holds:

(i) There is a constant k(M, g, H) > 0 such that if & is a compatible H-structure
satisfying ||V&o|| o (my < & then the harmonic H-flow starting at & exists for all
t > 0 and converges smooth/y to a torsion-free H-structure o, as t — oo.

(i) If (M", g) admits a compatible torsion-free H-structure £, then for all § > 0 there is
some £(0, M, g, H) > 0 such that for any compatible H-structure & on (M", g) with
|€&0 — §||C1 y < E the harmonic H-flow with initial condition &y exists for all t > 0,

satisfies the estlmate ||€& — £||Cl y < 0 for all t > 0, and converges smoothly to a
torsion-free H-structure £ as t —> 0.




Current projects and open questions

H = SU(m) C SO(2m) case (the H = Sp(k) C SO(4k) case is being studied by
Udhav Fowdar).

The singularity structure of the harmonic H-flow: what are the types of singularities
that can occur in each H-flow for different groups H? Produce examples of
(shrinking or expanding) solitons.

What are the topological obstructions (if any), according to the group H, for the
existence of divergence-free H-structures?

For each specific H, what is the role played by the initial condition in the behavior of
the harmonic H-flow? Is there any special type of structures that are preserved along
the harmonic H-flow? E.g., for H = Gao, if ¢o is a coclosed Ga-structure, is this
property preserved along the harmonic Ga-flow with initial condition o7

Study the G2 Laplacian co-flow with coclosed and divg T = 0 initial condition.
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