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H-structures
Let Mn be a connected and orientable smooth n-manifold without boundary.
∙ Fr(M) :=

⋃︀
x∈M{u : Tx M → Rn|u linear isomorphism}: principal GL(n,R)-bundle.

∙ H ⊂ GL(n,R) Lie subgroup; an H-structure on M is a principal H-subbundle
Q ⊂ Fr(M). (purely topological)

∙ e.g.: SO(n)-structure Q on M ⇐⇒ Riemannian metric g and orientation on M; Q
is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we
will write as 𝜋SO(n) : Fr(M, g)→ M.

∙ Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q
induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).

∙ Nonetheless, there are many H-structures inducing the same SO(n)-structure
Fr(M, g); note that H ↷ Fr(M, g) freely and quotient map
𝜋H : Fr(M, g)→ Fr(M, g)/H is a principal H-bundle.

∙ ⇝ 𝜋 : Fr(M, g)/H → M such that 𝜋SO(n) = 𝜋 ∘ 𝜋H is a fiber bundle ∼=
Fr(M, g)×SO(n) SO(n)/H.

∙ There is a bijection:
{Compatible H-structures on (M, g)} ←→ Γ(Fr(M, g)/H)

Q ↦→ (𝜎Q : x ↦→ 𝜋H(u), u ∈ 𝜋−1
SO(n)(x) ∩ Q)

Q𝜎 := 𝜋−1
H (𝜎(M))←[ 𝜎

∙ H ⊂ SO(n) closed and connected ⇒ SO(n)/H is a normal homogeneous
Riemannian n-manifold with canonical bi-invariant metric ⟨A, B⟩ := −tr(AB).
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Intrinsic torsion of a H-structure
∙ H-module decomposition so(n) = h⊕m, with m := h⊥ with respect to ⟨·, ·⟩, is

reductive: AdSO(n)(H)m ⊆ m.
∙ Q ⊂ Fr(M, g) compatible H-structure ⇝ H-module decomposition of the bundle

so(TM) := Fr(M, g)×SO(n) so(n) ⊆ End(TM) = T *M ⊗ TM:

so(TM) = hQ ⊕mQ , where
hQ := Q ×H h and mQ := Q ×H m.

∙ A connection ∇̃ on TM is compatible with the H-structure Q (H-connection), if
the connection 1-form 𝜔̃ ∈ Ω1(Fr(M), gl(n,R)) on Fr(M) reduces to Q. These are
precisely the ones induced by connections on Q. Since Q is compatible with g , any
H-connection ∇̃ on TM preserves g , and denoting by ∇ the Levi–Civita connection
of (Mn, g), it follows that T̃X := ∇̃X −∇X ∈ Γ(so(TM)), for all X ∈ X(M).
Essentially, T̃ is the torsion of ∇̃. Writing T̃X = 𝜋h(T̃X ) + 𝜋m(T̃X ), we can define
the H-connection ∇H

X := ∇̃X − 𝜋h(TX ). Since the difference between any two
H-connections lies in Γ(hQ), it follows that ∇H is the unique H-connection on M the
torsion T = T Q of which satisfies

TX = ∇H
X −∇X ∈ Γ(mQ).

T ∈ Ω1(M,mQ) is called the intrinsic torsion of Q, and Q is said to be torsion-free
when T ≡ 0 (⇐⇒ ∇ is an H-connection, Hol(g) ⊂ H).
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Geometric structures: H-structures characterized by their stabilized tensors

∙ Given an H-structure Q ⊂ Fr(M), a tensor field 𝜉 ∈ Γ(𝒯 p,q(TM)) is said to be
stabilized by H if, for any adapted H-coframe u ∈ Q one has
H ⊆ Stab(u−1.𝜉) ⊆ GL(n,R).

∙ In what follows, we shall be interested in H-structures that are completely
characterized by their stabilized tensors. This amounts to assuming that the group
H is the stabilizer of one or several tensors on Rn, meaning H = Stab(𝜉∘) for
some element 𝜉∘ = ((𝜉∘)1, . . . , (𝜉∘)k) in a subspace V ⩽ ⊕𝒯 p,q(Rn),
V = V1 ⊕ . . .⊕ Vk with Vi ⩽ 𝒯 pi ,qi (Rn). Then Q corresponds bijectively to a
geometric structure 𝜉 modelled on 𝜉∘: for each x ∈ M, there exists a coframe
u : Tx M → Rn identifying 𝜉(x) and 𝜉∘.

∙ e.g.: for H = U(m) ⊂ SO(2m) we can take 𝜉∘ = (g∘, J∘) ∈ Σ2 ⊕ End(R2m), where
g∘ and J∘ are the standard flat metric and complex structure, respectively; for
H = G2 ⊂ SO(7), we can take 𝜉∘ = 𝜙∘ ∈ Ω3(R7) the standard positive 3-form, etc.
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Infinitesimal deformations
The canonical right GL(n,R)-action on tensors induces an infinitesimal action of
endomorphisms A ∈ Γ(End(TM)) on elements 𝜉 ∈ Γ(𝒯 p,q(TM)) given by

A ◇ 𝜉 := d
dt

⃒⃒⃒
t=0

etA.𝜉.

Using the metric g , we let Aij := gljAl
i and we decompose A = S + C ∈ Σ2(M)⊕Ω2(M),

where Sij = 1
2 (Aij + Aji ) and Cij = 1

2 (Aij − Aji ).

Lemma
For all A, B ∈ Γ(End(TM)) and 𝜉 ∈ Γ(𝒯 p,q(TM)), the diamond operator ◇ satisfies:
(i) A ◇ B = −[A, B].
(ii) A ◇ (B ◇ 𝜉)− B ◇ (A ◇ 𝜉) = −[A, B] ◇ 𝜉.
(iii) If 𝜉 ∈ Γ(𝒯 0,q(TM)) is a symmetric (resp. alternating) tensor, then so is A ◇ 𝜉.
(iv) g ◇ 𝜉 = (q − p)𝜉.
(v) A = S + C ∈ Σ2(M)⊕ Ω2(M) ⇒ A ◇ g = 2S; in particular, ker(· ◇ g) = Ω2.
(vi) A ◇ volg = tr(A)volg ; in particular, ker(· ◇ volg ) = Σ2

0 ⊕ Ω2.
(vii) If D ∈ Ω2(M) then ⟨D ◇ 𝜉, 𝜉⟩g = 0.
(viii) If D ∈ Ω2(M) then ⟨A ◇ 𝜉, D ◇ 𝜉⟩g = −⟨D ◇ (A ◇ 𝜉), 𝜉⟩g .
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The diamond operator and compatible H-structures
Now suppose Q ⊂ Fr(M, g) is a compatible H-structure. Then we get a corresponding
H-module decomposition on Λ2(T *M) ≃ so(TM):

Λ2 = Λ2
h ⊕ Λ2

m, Λ2
h ≃ hQ and Λ2

m ≃ mQ .

We shall write Ω2
h := Γ(Λ2

h) and Ω2
m := Γ(Λ2

m). Then, splitting out the trivial submodule
Ω0 of Σ2(M) spanned by the Riemannian metric g , we have

Γ(End(TM)) ≃ Ω0 ⊕ Σ2
0 ⊕ Ω2

h ⊕ Ω2
m.

Lemma
The following hold:
(i) If 𝜉 ∈ Γ(𝒯 p,q(TM)) is stabilized under the action of H, then Ω2

h ⊆ ker(· ◇ 𝜉).
(ii) If H = Stab(𝜉∘), so that Q corresponds to a geometric structure 𝜉 = (𝜉1, . . . , 𝜉k)

modelled on 𝜉∘, then

Ω2
h = ker(· ◇ 𝜉) = ker(· ◇ 𝜉1) ∩ . . . ∩ ker(· ◇ 𝜉k).

(iii) If H = StabSO(n)(𝜉∘), then
Ω2

h = ker(· ◇ 𝜉) ∩ Ω2.
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Intrinsic torsion and diamond operator

Lemma
Let Q ⊂ Fr(M, g) be a compatible H-structure. If 𝜉 ∈ Γ(𝒯 p,q(TM)) is stabilized under
the action of H, then

∇X 𝜉 = TX ◇ 𝜉, ∀X ∈ X(M), (1.4)

In particular, if H = StabSO(n)(𝜉∘) and Q is thus determined by a geometric structure 𝜉
modelled on 𝜉∘, then there are constants c, c̃ > 0, depending only on (M, g) and H, such
that

c̃|T |2 ⩽ |∇𝜉|2 ⩽ c|T |2. (1.5)

If furthermore there is c > 0 such that ⟨A ◇ 𝜉, B ◇ 𝜉⟩ = c⟨A, B⟩, for all A, B ∈ Ω2
m(M)

(e.g. if m is an irreducible H-module), then in fact

|∇𝜉|2 = c|T |2. (1.6)
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Inner product relations

Lemma

Suppose H = StabSO(n)(𝜉∘) and 𝜉 is a compatible H-structure on (M, g). Let
m = m1 ⊕ . . .⊕mk be an orthogonal decomposition of m, with respect to the bi-invariant
metric ⟨A, B⟩ = −tr(AB), into non-equivalent, irreducible AdSO(n)(H)-submodules.
Then:
(i) ∃𝜆i ∈ R+ such that, for all A, B ∈ Ω2

m(M),

⟨A ◇ 𝜉, B ◇ 𝜉⟩ =
k∑︁

i=1

𝜆i⟨Ai , Bi⟩,

where Ai := 𝜋mi (A), Bi := 𝜋mi (B), for i = 1, . . . , k.
(ii) In particular,

⟨C ◇ (C ◇ 𝜉), D ◇ 𝜉⟩ =
k∑︁

i=1

𝜆i⟨[C , D], Ci⟩, ∀C , D ∈ Ω2
m(M), (1.8)

and this equals zero if 𝜆1 = . . . = 𝜆k (e.g. when m is irreducible).
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Example: U(m) case

Consider the case where H = U(m) = StabSO(2m)(J∘) ⊂ SO(2m). Then
m = u(m)⊥ = {A ∈ so(n) : AJ∘ = −J∘A} is irreducible, and for any compatible
U(m)-structure 𝜉 = J on (M2m, g), we can compute, for all A, B ∈ Ω2

m(M),

⟨A ◇ J , B ◇ J⟩ = ⟨[A, J], [B, J]⟩ = ⟨2AJ , (−2)JB⟩ = 4tr(AJJB)
= 4⟨A, B⟩.

Moreover,
∇X J = (TX ◇ J) = −[TX , J] = 2JTX , ∀X ∈ X(M),

since TX ∈ Ω2
u(m)⊥ ≃ {A ∈ so(M) : AJ = −JA}. Thus,

TX = −1
2J∇X J , ∀X ∈ X(M).

In particular,
|∇J |2 = 4|T |2.

Moreover, · ◇ J maps Ωu(m)⊥ into itself, so that ∇X J ∈ Ω2
u(m)⊥ , ∀X ∈ X(M).
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Rough Laplacian and the diamond operator

Write Δ := −∇*∇, so that at the center of normal coordinates Δ = ∇k∇k .

Lemma
Suppose Q ⊂ Fr(M, g) is a compatible H-structure with torsion T . If 𝜉 ∈ Γ(𝒯 p,q(TM))
is stabilized by H then

Δ𝜉 = divg T ◇ 𝜉 + Tk ◇ (Tk ◇ 𝜉), (1.10)

where (divg T )ij := ∇kTk;ij ∈ Ω2
m(M).

In particular, if H = StabSO(n)(𝜉∘) and Q is then determined by a geometric structure 𝜉
modelled on 𝜉∘, then ∃c > 0, depending only on (M, g) and H, such that if divg T = 0
then

|Δ𝜉| ⩽ c|∇𝜉|2. (1.11)

If furthermore there is c > 0 such that ⟨A ◇ 𝜉, B ◇ 𝜉⟩ = c⟨A, B⟩ for all A, B ∈ Ω2
m(M), i.e.

if c := 𝜆1 = . . . = 𝜆k (e.g. if m is an irreducible H-module), then the decomposition
(1.10) of Δ𝜉 is orthogonal.
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General flows of H-structures

When M admits a H-structure 𝜉 defined by one or several tensor fields which are
stabilized by H ⊂ SO(n), we saw in particular that Ω2

h is a subspace of ker(· ◇ 𝜉).
Consequently, a general GL(n,R)-variation of 𝜉 can be written as:

𝜕

𝜕t 𝜉 = A ◇ 𝜉, A ≡ A(t) = S(t) + C(t), S(t) ∈ Σ2, C(t) ∈ Ω2
m ⊂ Ω2. (1.12)

Moreover, if {𝜉(t)}t∈I∋0 is a family of H-structures evolving under (1.12), and if g(t) is
the unique Riemannian metric on Mn determined by 𝜉(t), then

𝜕

𝜕t g(t) = A(t) ◇ g(t) = 2S(t).

In particular, the flow is isometric iff S(t) ≡ 0.



12/27

Dirichlet energy functionals

Suppose (M, g) is closed and let 𝜉 be a compatible geometric H-structure. Consider the
following energy functionals:

ℰ(𝜉) := 1
2

∫︁
M
|T𝜉|2volg and 𝒟(𝜉) := 1

2

∫︁
M
|∇𝜉|2volg .

Then, by previous lemmas, there are c, c̃ > 0 depending only on (M, g) and H such that

c̃ℰ(𝜉) ⩽ 𝒟(𝜉) ⩽ cℰ(𝜉).

Moreover, under the assumption that c := 𝜆1 = . . . = 𝜆k , i.e. if there is c > 0 such that
⟨A ◇ 𝜉, B ◇ 𝜉⟩ = c⟨A, B⟩ for all A, B ∈ Ω2

m(M) (e.g. if m is an irreducible H-module), then

𝒟(𝜉) = cℰ(𝜉).
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First variation of the Dirichlet energy

Lemma

Suppose that H = StabSO(n)(𝜉∘) is such that 𝜆1 = . . . = 𝜆k (e.g. when m is an
irreducible H-module). If {𝜉(t)} is a smooth family of compatible H-structures on
(Mn, g), with 𝜉(0) = 𝜉 and d

dt |t=0𝜉(t) = C ◇ 𝜉, for some C ∈ Ω2
m, then

d
dt

⃒⃒⃒
t=0
𝒟(𝜉(t)) = −

∫︁
M
⟨C ◇ 𝜉, divg T ◇ 𝜉⟩volg .

Thus, the energy 𝒟 restricted to compatible H-structures on (Mn, g) has gradient
−divg T ◇ 𝜉 at each point 𝜉.
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Harmonic geometric structures

This motivates a natural harmonicity theory:

Definition
A family of compatible H-structures {𝜉(t)}t∈I on (M, g), parameterised by a
non-degenerate interval I ⊂ R, is a solution to the harmonic flow of H-structures (or
harmonic H-flow for short) if the following evolution equation holds for every t ∈ I:

𝜕

𝜕t 𝜉(t) = divg T (t) ◇ 𝜉(t), (HF)

where T (t) denotes the torsion of 𝜉(t). Given a compatible H-structure 𝜉0 on (Mn, g), a
solution to the harmonic flow of H-structures with initial condition (or starting at) 𝜉0 is a
solution of (HF) defined for every t ∈ [0, 𝜏0), for some 0 < 𝜏0 ⩽∞, and such that
𝜉(0) = 𝜉0.

Definition
When 𝜉 is a compatible H-structure on (Mn, g), we say that 𝜉 is harmonic when it has
divergence-free torsion:

divg T = 0.
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Some of the previous literature on harmonic structures
∙ The problem of fixing a metric g and looking for a “best” compatible H-structure

dates back to Calabi–Gluck (U(3)-structures on S6) and C. Wood in the 1990s;
Wood introduced the general notion of harmonicity from the point of view of
sections of twistor bundles. In the case H = U(m) ⊂ SO(2m), i.e. for an almost
complex structure J compatible with (M, g), the equation divg T = 0 becomes

[∇*∇J , J] = 0.

Of course, Kähler structures are absolute minimizers of the energy 𝒟 but ∃ various
absolute minimizers which are not Kähler (Bor-Lamoneda-Salvai ’07).

∙ González-Dávila and Martín Cabrera (2008) investigates general harmonic
H-structures, with a focus on U(m)-structures, characterizing harmonicity according
to each torsion class; when m = 3, T ∈ Λ1 ⊗ u(m)⊥ =𝒲1 ⊕𝒲2 ⊕𝒲3 ⊕𝒲4, where
𝒲i are irreducible U(m)-modules given by Gray–Hervella.

∙ The harmonic flow of G2-structures was more recently investigated by Grigorian
(2017, 2019), Bagaglini (2019), and Dwivedi–Gianniotis–Karigiannis (2019), while
the harmonic flow of U(m)-structures was studied by He–Li (2019). The general
harmonic flow of H-structures was introduced and investigated by Loubeau–Sá Earp
(2019).

∙ More recent works include the Spin(7) case of the flow by Dwivedi–Loubeau–Sá
Earp (2021), the work on harmonic Sp(2)-invariant G2-structures on S7 by
Loubeau–Moreno–Sá Earp–Saavedra (2022), and the study of the harmonic flow of
quaternion-Kähler structures by Fowdar–Sá Earp (2023).
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Short-time existence and uniqueness of the harmonic flow

There is a natural isomorphism between 𝜋 : Fr(M, g)/H → M and the associated bundle
Fr(M, g)×SO(n) SO(n)/H, which fibrewise is an isometry with respect to the bi-invariant
metric on SO(n). The induced one-to-one correspondence between sections
𝜎 ∈ Γ(Fr(M, g)/H) and SO(n)-equivariant maps s : Fr(M, g)→ SO(n)/H identifies
solutions to the harmonic section flow with SO(n)-equivariant solutions to the classical
harmonic map heat flow for maps Fr(M, g)→ SO(n)/H, where the target space
SO(n)/H is considered with its normal homogeneous Riemannian manifold structure.

Theorem (Loubeau–Sá Earp (2019))
Given any smooth compatible H-structure 𝜉0 on (Mn, g), there is a maximal time
𝜏 = 𝜏(𝜉0) ∈ (0,∞] such that the harmonic H-flow with initial condition 𝜉0 admits a
unique smooth solution 𝜉(t) for t ∈ [0, 𝜏). Moreover, if 𝜏 <∞ then supM |∇𝜉(t)| → ∞
as t → 𝜏 .
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Assumptions for our analytical results on the harmonic flow

∙ H = StabSO(n)(𝜉∘), where 𝜉∘ is an element of a r -dimensional SO(n)-submodule
V ⩽ ⊕𝒯 p,q(Rn). Furthermore, we assume that H is such that 𝜆1 = . . . = 𝜆k , i.e.
there is c > 0 such that ⟨A ◇ 𝜉, B ◇ 𝜉⟩ = c⟨A, B⟩, ∀A, B ∈ Ω2

m(M).
∙ Suppose (Mn, g) admits a compatible H-structure 𝜉0 and let {𝜉(t)}t∈[0,𝜏) be a

solution to the harmonic H-flow on (M, g) with initial condition 𝜉(0) = 𝜉0:

𝜕t𝜉 = divg T ◇ 𝜉, 𝜉(0) = 𝜉0.

∙ Let 0 < rM < inj(M, g). Then, restricted to the geodesic ball BrM (y) we can regard
𝜉 as a tensor defined on BrM (0)× [0, 𝜏) ⊂ Rn × [0, 𝜏) via normal coordinates. Fix
any 𝜏0 ∈ (0, 𝜏) and a cut-off function 𝜑 ∈ C∞

c (BrM (0)) with 𝜑|B rM
2

(0) ≡ 1. For all
t ∈ (0, 𝜏0) and 0 < r ⩽ min{√𝜏0/2, rM}, we define

Ψ(r) ≡ Ψ(y,𝜏0)(r) :=
∫︁ 𝜏0−r2

𝜏0−4r2

∫︁
Rn
|∇𝜉|2k(0,𝜏0)𝜑

2
√︀

det(g)dxdt.
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𝜀-regularity along the flow

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

There exists a constant 𝜀0 > 0, depending only on (Mn, g), the group H, and the energy
of the initial data such that, if Ψ(y,𝜏0)(r) < 𝜀0, then

sup
P𝛿r (y,𝜏0)

|∇𝜉|2 ⩽ 4(𝛿r)−2,

where P𝛿R is a parabolic neighbourhood, and the constant 𝛿 > 0 depends only on the
geometry and initial data.

The main ingredients to prove this result are:
∙ Almost monotonicity formula: ∀0 < R1 ⩽ R2 ⩽ min{√𝜏0/2, rM} and ∀N > 1,

Ψ(R1) ⩽ CΨ(R2) + C
(︁

Nn/2(E0 +
√︀

E0) + C
ln2 N

)︁
(R2 − R1).

∙ Bochner-type estimate for e(𝜉) := 1
2 |∇𝜉|2:

(𝜕t −Δ) e(𝜉) ⩽ CH(e(𝜉)2 + 1).
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An energy gap theorem
Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (Mn, g) be a closed Riemannian n-manifold admitting a compatible H-structure.
Then there is a constant 𝜀0(Mn, g , H) > 0 such that if 𝜉 is a compatible harmonic
H-structure on (Mn, g) whose energy satisfies 𝒟(𝜉) := 1

2‖∇𝜉‖2
L2(M) < 𝜀0, then 𝜉 is

actually torsion-free, i.e. ∇𝜉 = 0.

Proof.
If not true, then ∃ sequence (𝜉k)∞

k=1 of harmonic H-structures inducing g such that
𝒟(𝜉k)→ 0 as k →∞ but ∇𝜉k ̸= 0 for all k. By the 𝜀-regularity and Shi-type
estimates, it follows that for k ≫ 1 we have that |∇m𝜉k | is uniformly bounded ∀m ∈ N0.
Therefore, up to taking a subsequence, 𝜉k → 𝜉 in C∞ and ∇𝜉 = 0. Since 𝜉k is harmonic
and ∇𝜉 = 0, there is a uniform c > 0 such that

|Δ(𝜉k − 𝜉)| ⩽ c|∇(𝜉k − 𝜉)|2.

Combining this with integration by parts gives∫︁
M
|∇(𝜉k − 𝜉)|2 = −

∫︁
M
⟨𝜉k − 𝜉, Δ(𝜉k − 𝜉)⟩ ⩽ c‖𝜉k − 𝜉‖L∞(M)

∫︁
M
|∇(𝜉k − 𝜉)|2.

Since 𝜉k → 𝜉 as k →∞ in smooth topology, we get a contradiction. ■
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A finite-time singularity result for the harmonic H-flow

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (Mn, g) be a closed oriented Riemannian n-manifold endowed with a compatible
H-structure 𝜉 whose isometric homotopy class [𝜉] does not contain any torsion-free
H-structure but

inf
𝜉∈[𝜉]
𝒟(𝜉) = 0.

Then there is a constant 𝜀*(M, g , H) > 0 such that if 𝜉0 ∈ [𝜉] is such that 𝒟(𝜉0) < 𝜀*,
then the harmonic H-flow starting at 𝜉0 develops a finite time singularity. Moreover, if
[0, 𝜏(𝜉0)) denotes the maximal existence interval for the solution, then 𝜏(𝜉0)n−2 ≲ 𝒟(𝜉0);
in particular, 𝜏(𝜉0)→ 0 as 𝒟(𝜉0)→ 0.
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Example(s) of finite-time singularity for the harmonic H-flow

∙ M := T 7 endowed with the standard G2-structure 𝜙0 inducing the flat metric g0.
∙ Frame bundle of (T 7, g0) is trivial and so is the twistor bundle

Fr(T 7, g0)/G2 = T 7 × SO(7)/G2 = T 7 × RP7 of G2-structures isometric to 𝜙0.
∙ ∴ any G2-structure 𝜙 isometric to 𝜙0 can be thought of as a map from T 7 to RP7,

and under such identification the standard G2-structure 𝜙0 corresponds to a
constant map.

∙ Fix r0 small enough so that the geodesic ball B(p, r0) ⊂ (T 7, g0) is isometric to the
Euclidean ball B(0, r0) ⊂ R7, and consider an isometric G2-structure 𝜙 ∈ [[𝜙0]]
which is the constant map 𝜙0 outside B(p, r0). In particular, we can think of 𝜙
(restricted to B(p, r0)) as a map from the 7-sphere S7 to RP7. In this sense, the
isometric homotopy class of 𝜙 then corresponds to an element of
𝜋7(RP7) = 𝜋7(S7) = Z, and 𝜙 ∈ [𝜙0] if and only if such an element is the trivial
one. Choose 𝜙 such that its isometric homotopy class corresponds to any nonzero
element in 𝜋7(RP7) = Z. Up to a deformation within its isometric hotomopy class,
we can assume that 𝜙 is a smooth G2-structure, which by construction is isometric
to 𝜙0 but [𝜙] ̸= 0 = [𝜙0].
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Example(s) of finite-time singularity for the harmonic H-flow
∙ ∀r ∈ (0, r0], let 𝜙r be the G2-structure on T 7 such that 𝜙r |X∖B(p,r) = 𝜙0, and

𝜙r (x) := 𝜙
(︁xr0

r

)︁
, ∀x ∈ B(p, r) ≃ B(0, r) ⊂ R7.

∙ 𝜙r is isometric to 𝜙0 and 𝜙r ∈ [𝜙] ̸= 0 = [𝜙0]. We compute the energy of 𝜙r :

2𝒟(𝜙r ) =
∫︁

B(p,r)
|∇𝜙r |2(x)dx (since 𝜙r = 𝜙0 outside B(p, r))

=
∫︁

B(p,r)

⃒⃒⃒
∇

(︁
𝜙

(︁xr0

r

)︁)︁⃒⃒⃒2
dx (by the def of 𝜙r )

= r 2
0 r−2

∫︁
B(p,r)

|∇𝜙|2
(︁xr0

r

)︁
dx

= r 2
0 r−2r−7

0 r 7
∫︁

B(p,r0)
|∇𝜙|2(y)dy (by change of variables)

= r−5
0 r 5𝒟(𝜙). (since 𝜙 = 𝜙0 outside B(p, r0))

In particular, 𝒟(𝜙r )→ 0 as r → 0 and therefore

inf
𝜙̃∈[𝜙]

𝒟(𝜙) = 0.
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∙ On the other hand, [𝜙] cannot contain any torsion-free G2-structure, since any such
would correspond to a constant map from T 7 to RP7 and [𝜙] is non-trivial.

∙ Claim: For r ≪ 1, the harmonic G2-flow starting at 𝜙r has a finite time singularity.
∙ Indeed: if otherwise the flow 𝜙(t) with 𝜙(0) = 𝜙r exist for all time t > 0 then, since

r ≪ 1, and thus 𝒟(𝜙r )≪ 1, it follows from the 𝜀-regularity together with Shi-type
estimates that 𝜙(t) converges smoothly as t →∞ to a divergence-free torsion
G2-structure 𝜙∞ ∈ [𝜙r ] = [𝜙]. In fact, if r ≪ 1 is small enough, 𝜙∞ would be
torsion-free because of the energy gap and the fact that the energy is non-increasing
along the flow. But 𝜙∞ being torsion-free implies that its homotopy class
corresponds to that of a constant map from T 7 to RP7, contradicting the
non-triviality of [𝜙] ̸= 0 = [𝜙0].

∙ Notice that although on the one hand the 𝜙r have arbitrarily small energy
𝒟(𝜙r )→ 0 as r → 0, on the other hand the L∞-norm of its torsion is blowing-up as
r → 0:

‖∇𝜙r‖L∞(M) = r0r−1‖∇𝜙‖L∞(B(p,r0)) →∞ as r → 0.

Thus, this example also illustrates that a general long-time existence result for the
harmonic flow under the hypothesis of small initial energy should take into account
the L∞-norm of the initial torsion in the smallness condition.
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Long-time existence under small initial energy

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (Mn, g) be a closed, oriented Riemannian n-manifold admitting a compatible
H-structure. Then for any given constant K > 0, there is a universal constant 𝜀(K) > 0,
depending only on K, the geometry (M, g) and H, such that if 𝜉0 is a compatible
H-structure on (Mn, g) satisfying
(i) ‖∇𝜉0‖L∞(M) ⩽ K and
(ii) 𝒟(𝜉0) := 1

2‖∇𝜉0‖2
L2(M) < 𝜀(K),

then the harmonic H-flow with initial condition 𝜉0 exists for all time t ⩾ 0 and converges
smoothly to a torsion-free H-structure as t →∞.
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Long-time existence under small initial torsion

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))
Let (Mn, g) be a closed, oriented Riemannian n-manifold admitting a compatible
H-structure 𝜉0. Then, for every 𝛿 > 0 there is 𝜀 = 𝜀(𝛿, Mn, g , H) > 0 such that if
‖∇𝜉0‖L∞(M) < 𝜀 then the harmonic H-flow 𝜉(t) starting from 𝜉0 exists for all time t ⩾ 0
and converges smoothly to a harmonic H-structure 𝜉∞ which furthermore satisfies
‖∇𝜉∞‖L∞(M) < 𝛿.
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Stability of torsion-free structures along the flow

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))
Let (Mn, g) be a closed, oriented Riemannian n-manifold admitting a compatible
H-structure. Then the following holds:
(i) There is a constant 𝜅(M, g , H) > 0 such that if 𝜉0 is a compatible H-structure

satisfying ‖∇𝜉0‖L∞(M) < 𝜅 then the harmonic H-flow starting at 𝜉0 exists for all
t ⩾ 0 and converges smoothly to a torsion-free H-structure 𝜉∞ as t →∞.

(ii) If (Mn, g) admits a compatible torsion-free H-structure 𝜉, then for all 𝛿 > 0 there is
some 𝜀(𝛿, M, g , H) > 0 such that for any compatible H-structure 𝜉0 on (Mn, g) with
‖𝜉0 − 𝜉‖C1(M) < 𝜀 the harmonic H-flow with initial condition 𝜉0 exists for all t ⩾ 0,
satisfies the estimate ‖𝜉t − 𝜉‖C1(M) < 𝛿 for all t ⩾ 0, and converges smoothly to a
torsion-free H-structure 𝜉∞ as t →∞.
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Current projects and open questions

∙ H = SU(m) ⊂ SO(2m) case (the H = Sp(k) ⊂ SO(4k) case is being studied by
Udhav Fowdar).

∙ The singularity structure of the harmonic H-flow: what are the types of singularities
that can occur in each H-flow for different groups H? Produce examples of
(shrinking or expanding) solitons.

∙ What are the topological obstructions (if any), according to the group H, for the
existence of divergence-free H-structures?

∙ For each specific H, what is the role played by the initial condition in the behavior of
the harmonic H-flow? Is there any special type of structures that are preserved along
the harmonic H-flow? E.g., for H = G2, if 𝜙0 is a coclosed G2-structure, is this
property preserved along the harmonic G2-flow with initial condition 𝜙0?

∙ Study the G2 Laplacian co-flow with coclosed and divg T = 0 initial condition.
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