On the harmonic flow of geometric structures

Daniel Fadel

UFRJ

Workshop BRIDGES

June 21, 2023

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- $\operatorname{Fr}(M) := \bigcup_{x \in M} \{ u : T_x M \to \mathbb{R}^n | u \text{ linear isomorphism} \}$: principal $\operatorname{GL}(n, \mathbb{R})$ -bundle.
- $H \subset \operatorname{GL}(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset \operatorname{Fr}(M)$. (purely topological)
- e.g.: SO(n)-structure Q on M ⇐⇒ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M,g), which we will write as π_{SO(n)} : Fr(M,g) → M.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M, g); note that $H \curvearrowright Fr(M, g)$ freely and quotient map $\pi_H : Fr(M, g) \to Fr(M, g)/H$ is a principal *H*-bundle.
- → π : Fr(M,g)/H → M such that π_{SO(n)} = π ∘ π_H is a fiber bundle ≃ Fr(M,g) ×_{SO(n)} SO(n)/H.
- There is a bijection:

{Compatible *H*-structures on (M,g)} $\longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

 $Q \mapsto (\sigma_Q : x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q)$ $\sigma := \pi_H^{-1}(\sigma(M)) \leftarrow \sigma$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- $\operatorname{Fr}(M) := \bigcup_{x \in M} \{u : T_x M \to \mathbb{R}^n | u \text{ linear isomorphism} \}$: principal $\operatorname{GL}(n, \mathbb{R})$ -bundle.
- *H* ⊂ GL(*n*, ℝ) Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle *Q* ⊂ Fr(*M*). (purely topological)
- e.g.: SO(n)-structure Q on M ⇐⇒ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M,g), which we will write as π_{SO(n)} : Fr(M,g) → M.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M, g); note that $H \curvearrowright Fr(M, g)$ freely and quotient map $\pi_H : Fr(M, g) \to Fr(M, g)/H$ is a principal *H*-bundle.
- → π : Fr(M,g)/H → M such that π_{SO(n)} = π ∘ π_H is a fiber bundle ≃
 Fr(M,g) ×_{SO(n)} SO(n)/H.
- There is a bijection:

 $\{\mathsf{Compatible}\ H\text{-structures on }(M,g)\}\longleftrightarrow \mathsf{\Gamma}(\mathrm{Fr}(M,g)/H)$

 $Q \mapsto (\sigma_Q : x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q)$ $\sigma := \pi_H^{-1}(\sigma(M)) \leftarrow \sigma$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- Fr(M) := ⋃_{x∈M}{u : T_xM → ℝⁿ|u linear isomorphism}: principal GL(n, ℝ)-bundle.
- $H \subset \operatorname{GL}(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset \operatorname{Fr}(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many H-structures inducing the same SO(n)-structure Fr(M, g); note that H ~ Fr(M, g) freely and quotient map π_H : Fr(M, g) → Fr(M, g)/H is a principal H-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M,g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle \cong $\operatorname{Fr}(M,g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H.$
- There is a bijection:

{Compatible *H*-structures on (M,g)} $\longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

 $Q \mapsto (\sigma_Q : \mathsf{x} \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(\mathsf{x}) \cap Q)$ $:= \pi_H^{-1}(\sigma(M)) \leftrightarrow \sigma$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- Fr(M) := ⋃_{x∈M} {u : T_xM → ℝⁿ|u linear isomorphism}: principal GL(n, ℝ)-bundle.
- $H \subset GL(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset Fr(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M,g); note that $H \curvearrowright Fr(M,g)$ freely and quotient map $\pi_H : Fr(M,g) \to Fr(M,g)/H$ is a principal *H*-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M,g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle \cong $\operatorname{Fr}(M,g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H$.
- There is a bijection:

{Compatible *H*-structures on (M,g)} $\longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

 $Q \mapsto (\sigma_Q : x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q)$ $:= \pi_H^{-1}(\sigma(M)) \leftrightarrow \sigma$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- Fr(M) := ⋃_{x∈M} {u : T_xM → ℝⁿ|u linear isomorphism}: principal GL(n, ℝ)-bundle.
- $H \subset GL(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset Fr(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M,g); note that $H \curvearrowright Fr(M,g)$ freely and quotient map $\pi_H : Fr(M,g) \to Fr(M,g)/H$ is a principal *H*-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M,g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle \cong $\operatorname{Fr}(M,g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H.$
- There is a bijection:

{Compatible *H*-structures on (M,g)} $\longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

 $Q \mapsto (\sigma_Q : x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q)$ $Q_\sigma := \pi_H^{-1}(\sigma(M)) \leftrightarrow \sigma$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- Fr(M) := ⋃_{x∈M} {u : T_xM → ℝⁿ|u linear isomorphism}: principal GL(n, ℝ)-bundle.
- $H \subset GL(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset Fr(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M, g); note that $H \curvearrowright Fr(M, g)$ freely and quotient map $\pi_H : Fr(M, g) \to Fr(M, g)/H$ is a principal *H*-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M,g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle $\cong \operatorname{Fr}(M,g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H$.
- There is a bijection:

{Compatible *H*-structures on (M,g)} $\longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

$$Q \mapsto (\sigma_Q : x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q)$$

$$\mu := \pi_H^{-1}(\sigma(M)) \leftrightarrow \sigma$$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- Fr(M) := ⋃_{x∈M} {u : T_xM → ℝⁿ|u linear isomorphism}: principal GL(n, ℝ)-bundle.
- $H \subset GL(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset Fr(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M, g); note that $H \curvearrowright Fr(M, g)$ freely and quotient map $\pi_H : Fr(M, g) \to Fr(M, g)/H$ is a principal *H*-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M, g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle $\cong \operatorname{Fr}(M, g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H$.
- There is a bijection:

 $\{\text{Compatible } H\text{-structures on } (M,g)\} \longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

$$Q \mapsto (\sigma_Q : x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q)$$
$$:= \pi_H^{-1}(\sigma(M)) \leftrightarrow \sigma$$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- Fr(M) := ⋃_{x∈M}{u : T_xM → ℝⁿ|u linear isomorphism}: principal GL(n, ℝ)-bundle.
- $H \subset GL(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset Fr(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M, g); note that $H \curvearrowright Fr(M, g)$ freely and quotient map $\pi_H : Fr(M, g) \to Fr(M, g)/H$ is a principal *H*-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M, g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle $\cong \operatorname{Fr}(M, g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H$.
- There is a bijection:

 $\begin{array}{l} \{\text{Compatible } H\text{-structures on } (M,g)\} \longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H) \\ Q \mapsto (\sigma_{\mathcal{Q}}: x \mapsto \pi_{H}(u), u \in \pi_{\operatorname{SO}(n)}^{-1}(x) \cap Q) \end{array}$

$$Q_{\sigma}:=\pi_{H}^{-1}(\sigma(M)) \leftrightarrow \sigma$$

Let M^n be a connected and orientable smooth *n*-manifold without boundary.

- $Fr(M) := \bigcup_{x \in M} \{u : T_x M \to \mathbb{R}^n | u \text{ linear isomorphism} \}$: principal $GL(n, \mathbb{R})$ -bundle.
- $H \subset GL(n, \mathbb{R})$ Lie subgroup; an *H*-structure on *M* is a principal *H*-subbundle $Q \subset Fr(M)$. (purely topological)
- e.g.: SO(n)-structure Q on $M \iff$ Riemannian metric g and orientation on M; Q is the principal SO(n)-bundle of oriented orthonormal coframes of (M, g), which we will write as $\pi_{SO(n)}$: Fr $(M, g) \rightarrow M$.
- Assume from now on H ⊂ SO(n) closed and connected. Then, any H-structure Q induces a unique SO(n)-structure P such that Q ⊂ P (P = SO(n) · Q).
- Nonetheless, there are many *H*-structures inducing the same SO(n)-structure Fr(M, g); note that $H \curvearrowright Fr(M, g)$ freely and quotient map $\pi_H : Fr(M, g) \to Fr(M, g)/H$ is a principal *H*-bundle.
- $\rightsquigarrow \pi : \operatorname{Fr}(M, g)/H \to M$ such that $\pi_{\operatorname{SO}(n)} = \pi \circ \pi_H$ is a fiber bundle $\cong \operatorname{Fr}(M, g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H$.
- There is a bijection:

 $\{\text{Compatible } H ext{-structures on } (M,g)\} \longleftrightarrow \Gamma(\operatorname{Fr}(M,g)/H)$

$$egin{aligned} Q \mapsto (\sigma_Q: x \mapsto \pi_H(u), u \in \pi_{\mathrm{SO}(n)}^{-1}(x) \cap Q) \ Q_\sigma &:= \pi_H^{-1}(\sigma(M)) \leftrightarrow \sigma \end{aligned}$$

- *H*-module decomposition $\mathfrak{so}(n) = \mathfrak{h} \oplus \mathfrak{m}$, with $\mathfrak{m} := \mathfrak{h}^{\perp}$ with respect to $\langle \cdot, \cdot \rangle$, is *reductive*: $\operatorname{Ad}_{\operatorname{SO}(n)}(H)\mathfrak{m} \subseteq \mathfrak{m}$.
- $Q \subset \operatorname{Fr}(M,g)$ compatible *H*-structure \rightsquigarrow *H*-module decomposition of the bundle $\mathfrak{so}(TM) := \operatorname{Fr}(M,g) \times_{\mathrm{SO}(n)} \mathfrak{so}(n) \subseteq \operatorname{End}(TM) = T^*M \otimes TM$:

 $\mathfrak{so}(TM) = \mathfrak{h}_Q \oplus \mathfrak{m}_Q, \quad \text{where}$ $\mathfrak{h}_Q := Q \times_H \mathfrak{h} \quad \text{and} \quad \mathfrak{m}_Q := Q \times_H \mathfrak{m}.$

A connection ∇̃ on *TM* is compatible with the *H*-structure *Q* (*H*-connection), if the connection 1-form ω̃ ∈ Ω¹(Fr(*M*), gl(*n*, ℝ)) on Fr(*M*) reduces to *Q*. These are precisely the ones induced by connections on *Q*. Since *Q* is compatible with *g*, any *H*-connection ∇̃ on *TM* preserves *g*, and denoting by ∇ the Levi–Civita connection of (*Mⁿ*, *g*), it follows that T̃_X := ∇̃_X - ∇_X ∈ Γ(so(*TM*)), for all X ∈ 𝔅(*M*). Essentially, T̃ is the *torsion* of ∇̃. Writing T̃_X = π_b(T̃_X) + π_m(T̃_X), we can define the *H*-connection ∇^{*K*}_{*H*} := ∇̃_X - π_b(*T*_X). Since the difference between any two *H*-connections lies in Γ(h_Q), it follows that ∇^{*H*} is the unique *H*-connection on *M* the torsion *T* = *T^Q* of which satisfies

$$T_X = \nabla_X^H - \nabla_X \in \Gamma(\mathfrak{m}_Q).$$

- *H*-module decomposition $\mathfrak{so}(n) = \mathfrak{h} \oplus \mathfrak{m}$, with $\mathfrak{m} := \mathfrak{h}^{\perp}$ with respect to $\langle \cdot, \cdot \rangle$, is *reductive*: $\operatorname{Ad}_{\operatorname{SO}(n)}(H)\mathfrak{m} \subseteq \mathfrak{m}$.
- $Q \subset \operatorname{Fr}(M,g)$ compatible *H*-structure \rightsquigarrow *H*-module decomposition of the bundle $\mathfrak{so}(TM) := \operatorname{Fr}(M,g) \times_{\mathrm{SO}(n)} \mathfrak{so}(n) \subseteq \operatorname{End}(TM) = T^*M \otimes TM$:

 $\mathfrak{so}(TM) = \mathfrak{h}_Q \oplus \mathfrak{m}_Q, \quad \text{where}$ $\mathfrak{h}_Q := Q \times_H \mathfrak{h} \quad \text{and} \quad \mathfrak{m}_Q := Q \times_H \mathfrak{m}.$

A connection ∇̃ on *TM* is compatible with the *H*-structure *Q* (*H*-connection), if the connection 1-form ω̃ ∈ Ω¹(Fr(*M*), gl(*n*, ℝ)) on Fr(*M*) reduces to *Q*. These are precisely the ones induced by connections on *Q*. Since *Q* is compatible with *g*, any *H*-connection ∇̃ on *TM* preserves *g*, and denoting by ∇ the Levi–Civita connection of (*Mⁿ*, *g*), it follows that *T*_X := ∇_X - ∇_X ∈ Γ(so(*TM*)), for all X ∈ 𝔅(*M*). Essentially, *T* is the *torsion* of ∇̃. Writing *T*_X = π_b(*T*_X) + π_m(*T*_X), we can define the *H*-connection ∇^{*H*}_{*K*} := ∇_X - π_b(*T*_X). Since the difference between any two *H*-connections lies in Γ(h_Q), it follows that ∇^{*H*} is the unique *H*-connection on *M* the torsion *T* = *T*^{*Q*} of which satisfies

$$T_X = \nabla^H_X - \nabla_X \in \Gamma(\mathfrak{m}_Q).$$

- *H*-module decomposition $\mathfrak{so}(n) = \mathfrak{h} \oplus \mathfrak{m}$, with $\mathfrak{m} := \mathfrak{h}^{\perp}$ with respect to $\langle \cdot, \cdot \rangle$, is *reductive*: $\operatorname{Ad}_{\operatorname{SO}(n)}(H)\mathfrak{m} \subseteq \mathfrak{m}$.
- $Q \subset \operatorname{Fr}(M,g)$ compatible *H*-structure \rightsquigarrow *H*-module decomposition of the bundle $\mathfrak{so}(TM) := \operatorname{Fr}(M,g) \times_{\mathrm{SO}(n)} \mathfrak{so}(n) \subseteq \operatorname{End}(TM) = T^*M \otimes TM$:

 $\mathfrak{so}(TM) = \mathfrak{h}_Q \oplus \mathfrak{m}_Q, \quad \text{where}$ $\mathfrak{h}_Q := Q \times_H \mathfrak{h} \quad \text{and} \quad \mathfrak{m}_Q := Q \times_H \mathfrak{m}.$

A connection ∇ on *TM* is compatible with the *H*-structure *Q* (*H*-connection), if the connection 1-form ũ ∈ Ω¹(Fr(*M*), gl(*n*, ℝ)) on Fr(*M*) reduces to *Q*. These are precisely the ones induced by connections on *Q*. Since *Q* is compatible with *g*, any *H*-connection ∇ on *TM* preserves *g*, and denoting by ∇ the Levi–Civita connection of (*Mⁿ*, *g*), it follows that T̃_X := ∇̃_X - ∇_X ∈ Γ(so(*TM*)), for all X ∈ 𝔅(*M*). Essentially, T̃ is the *torsion* of ∇̃. Writing T̃_X = π_b(T̃_X) + π_m(T̃_X), we can define the *H*-connection ∇^{*K*}_{*L*} := ∇̃_X - π_b(*T*_X). Since the difference between any two *H*-connections lies in Γ(𝔥_Q), it follows that ∇^{*H*} is the unique *H*-connection on *M* the torsion *T* = *T*^{*Q*} of which satisfies

$$T_X = \nabla^H_X - \nabla_X \in \Gamma(\mathfrak{m}_Q).$$

- *H*-module decomposition $\mathfrak{so}(n) = \mathfrak{h} \oplus \mathfrak{m}$, with $\mathfrak{m} := \mathfrak{h}^{\perp}$ with respect to $\langle \cdot, \cdot \rangle$, is *reductive*: $\operatorname{Ad}_{\operatorname{SO}(n)}(H)\mathfrak{m} \subseteq \mathfrak{m}$.
- $Q \subset \operatorname{Fr}(M,g)$ compatible *H*-structure \rightsquigarrow *H*-module decomposition of the bundle $\mathfrak{so}(TM) := \operatorname{Fr}(M,g) \times_{\mathrm{SO}(n)} \mathfrak{so}(n) \subseteq \operatorname{End}(TM) = T^*M \otimes TM$:

$$\mathfrak{so}(TM) = \mathfrak{h}_Q \oplus \mathfrak{m}_Q, \quad \text{where}$$
$$\mathfrak{h}_Q := Q \times_H \mathfrak{h} \quad \text{and} \quad \mathfrak{m}_Q := Q \times_H \mathfrak{m}.$$

A connection ∇ on *TM* is compatible with the *H*-structure *Q* (*H*-connection), if the connection 1-form ũ ∈ Ω¹(Fr(*M*), gl(*n*, ℝ)) on Fr(*M*) reduces to *Q*. These are precisely the ones induced by connections on *Q*. Since *Q* is compatible with *g*, any *H*-connection ∇ on *TM* preserves *g*, and denoting by ∇ the Levi–Civita connection of (*Mⁿ*, *g*), it follows that T_X := ∇_X - ∇_X ∈ Γ(so(*TM*)), for all X ∈ 𝔅(*M*). Essentially, T is the torsion of ∇. Writing T_X = π_b(T_X) + π_m(T_X), we can define the *H*-connection ∇^{*K*}_{*L*} := ∇_X - π_b(*T*_X). Since the difference between any two *H*-connections lies in Γ(𝔥_Q), it follows that ∇^{*H*} is the unique *H*-connection on *M* the torsion *T* = *T*^{*Q*} of which satisfies

$$T_X = \nabla^H_X - \nabla_X \in \Gamma(\mathfrak{m}_Q).$$

Geometric structures: H-structures characterized by their stabilized tensors

- Given an H-structure Q ⊂ Fr(M), a tensor field ξ ∈ Γ(T^{p,q}(TM)) is said to be stabilized by H if, for any adapted H-coframe u ∈ Q one has H ⊆ Stab(u⁻¹.ξ) ⊆ GL(n, ℝ).
- In what follows, we shall be interested in *H*-structures that are completely characterized by their stabilized tensors. This amounts to assuming that the group *H* is the stabilizer of one or several tensors on ℝⁿ, meaning *H* = Stab(ξ₀) for some element ξ₀ = ((ξ₀)₁,..., (ξ₀)_k) in a subspace V ≤ ⊕*T*^{p,q}(ℝⁿ), V = V₁ ⊕...⊕ V_k with V_i ≤ *T*<sup>p_i,q_i(ℝⁿ). Then *Q* corresponds bijectively to a geometric structure ξ modelled on ξ₀: for each x ∈ M, there exists a coframe u : *T_xM* → ℝⁿ identifying ξ(x) and ξ₀.
 </sup>
- e.g.: for $H = U(m) \subset SO(2m)$ we can take $\xi_{\circ} = (g_{\circ}, J_{\circ}) \in \Sigma^{2} \oplus End(\mathbb{R}^{2m})$, where g_{\circ} and J_{\circ} are the standard flat metric and complex structure, respectively; for $H = G_{2} \subset SO(7)$, we can take $\xi_{\circ} = \varphi_{\circ} \in \Omega^{3}(\mathbb{R}^{7})$ the standard positive 3-form, etc.

Infinitesimal deformations

The canonical right $\operatorname{GL}(n, \mathbb{R})$ -action on tensors induces an **infinitesimal action** of endomorphisms $A \in \Gamma(\operatorname{End}(TM))$ on elements $\xi \in \Gamma(\mathcal{T}^{p,q}(TM))$ given by

$$A \diamond \xi := \left. \frac{d}{dt} \right|_{t=0} e^{tA} . \xi.$$

Using the metric g, we let $A_{ij} := g_{ij}A_i^l$ and we decompose $A = S + C \in \Sigma^2(M) \oplus \Omega^2(M)$, where $S_{ij} = \frac{1}{2}(A_{ij} + A_{ji})$ and $C_{ij} = \frac{1}{2}(A_{ij} - A_{ji})$.

Lemma

For all $A, B \in \Gamma(\text{End}(TM))$ and $\xi \in \Gamma(\mathcal{T}^{p,q}(TM))$, the diamond operator \diamond satisfies: (i) $A \diamond B = -[A, B]$. (ii) $A \diamond (B \diamond \xi) - B \diamond (A \diamond \xi) = -[A, B] \diamond \xi$. (iii) If $\xi \in \Gamma(\mathcal{T}^{0,q}(TM))$ is a symmetric (resp. alternating) tensor, then so is $A \diamond \xi$. (iv) $g \diamond \xi = (q - p)\xi$. (v) $A = S + C \in \Sigma^2(M) \oplus \Omega^2(M) \Rightarrow A \diamond g = 2S$; in particular, ker $(\cdot \diamond g) = \Omega^2$. (vi) $A \diamond \operatorname{vol}_g = \operatorname{tr}(A)\operatorname{vol}_g$; in particular, ker $(\cdot \diamond \operatorname{vol}_g) = \Sigma_0^2 \oplus \Omega^2$. (vii) If $D \in \Omega^2(M)$ then $\langle D \diamond \xi, \xi \rangle_g = 0$. (viii) If $D \in \Omega^2(M)$ then $\langle A \diamond \xi, D \diamond \xi \rangle_g = -\langle D \diamond (A \diamond \xi), \xi \rangle_g$.

The diamond operator and compatible H-structures

Now suppose $Q \subset Fr(M, g)$ is a compatible *H*-structure. Then we get a corresponding *H*-module decomposition on $\Lambda^2(T^*M) \simeq \mathfrak{so}(TM)$:

$$\Lambda^2 = \Lambda^2_{\mathfrak{h}} \oplus \Lambda^2_{\mathfrak{m}}, \quad \Lambda^2_{\mathfrak{h}} \simeq \mathfrak{h}_{\mathcal{Q}} \quad \text{and} \quad \Lambda^2_{\mathfrak{m}} \simeq \mathfrak{m}_{\mathcal{Q}}.$$

We shall write $\Omega_{\mathfrak{h}}^2 := \Gamma(\Lambda_{\mathfrak{h}}^2)$ and $\Omega_{\mathfrak{m}}^2 := \Gamma(\Lambda_{\mathfrak{m}}^2)$. Then, splitting out the trivial submodule Ω^0 of $\Sigma^2(M)$ spanned by the Riemannian metric g, we have

$$\Gamma(\operatorname{End}(TM)) \simeq \Omega^0 \oplus \Sigma_0^2 \oplus \Omega_{\mathfrak{h}}^2 \oplus \Omega_{\mathfrak{m}}^2.$$

Lemma

The following hold:

- (i) If $\xi \in \Gamma(\mathcal{T}^{p,q}(TM))$ is stabilized under the action of H, then $\Omega^2_{\mathfrak{h}} \subseteq \ker(\cdot \diamond \xi)$.
- (ii) If $H = \text{Stab}(\xi_{\circ})$, so that Q corresponds to a geometric structure $\xi = (\xi_1, \dots, \xi_k)$ modelled on ξ_{\circ} , then

$$\Omega^2_{\mathfrak{h}} = \ker(\cdot \diamond \xi) = \ker(\cdot \diamond \xi_1) \cap \ldots \cap \ker(\cdot \diamond \xi_k).$$

(iii) If $H = \operatorname{Stab}_{SO(n)}(\xi_{\circ})$, then

$$\Omega^2_{\mathfrak{h}} = \operatorname{ker}(\cdot \diamond \xi) \cap \Omega^2.$$

Intrinsic torsion and diamond operator

Lemma

Let $Q \subset Fr(M, g)$ be a compatible H-structure. If $\xi \in \Gamma(\mathcal{T}^{p,q}(TM))$ is stabilized under the action of H, then

$$\nabla_X \xi = T_X \diamond \xi, \quad \forall X \in \mathfrak{X}(M), \tag{1.4}$$

In particular, if $H = \operatorname{Stab}_{SO(n)}(\xi_{\circ})$ and Q is thus determined by a geometric structure ξ modelled on ξ_{\circ} , then there are constants $c, \tilde{c} > 0$, depending only on (M, g) and H, such that

$$\tilde{c}|T|^2 \leqslant |\nabla\xi|^2 \leqslant c|T|^2.$$
(1.5)

If furthermore there is c > 0 such that $\langle A \diamond \xi, B \diamond \xi \rangle = c \langle A, B \rangle$, for all $A, B \in \Omega^2_{\mathfrak{m}}(M)$ (e.g. if \mathfrak{m} is an irreducible H-module), then in fact

$$|\nabla \xi|^2 = c |T|^2.$$
 (1.6)

Inner product relations

Lemma

Suppose $H = \operatorname{Stab}_{SO(n)}(\xi_{\circ})$ and ξ is a compatible H-structure on (M, g). Let $\mathfrak{m} = \mathfrak{m}_1 \oplus \ldots \oplus \mathfrak{m}_k$ be an orthogonal decomposition of \mathfrak{m} , with respect to the bi-invariant metric $\langle A, B \rangle = -\operatorname{tr}(AB)$, into non-equivalent, irreducible $\operatorname{Ad}_{SO(n)}(H)$ -submodules. Then:

(i) $\exists \lambda_i \in \mathbb{R}_+$ such that, for all $A, B \in \Omega^2_{\mathfrak{m}}(M)$,

$$\langle A \diamond \xi, B \diamond \xi \rangle = \sum_{i=1}^{\kappa} \lambda_i \langle A_i, B_i \rangle,$$

where $A_i := \pi_{\mathfrak{m}_i}(A)$, $B_i := \pi_{\mathfrak{m}_i}(B)$, for i = 1, ..., k. (ii) In particular,

 $\langle C \diamond (C \diamond \xi), D \diamond \xi
angle = \sum_{i=1}^{k} \lambda_i \langle [C, D], C_i
angle, \quad \forall C, D \in \Omega^2_{\mathfrak{m}}(M),$ (1.8)

and this equals zero if $\lambda_1 = \ldots = \lambda_k$ (e.g. when \mathfrak{m} is irreducible).

Example: U(m) case

Consider the case where $H = U(m) = \operatorname{Stab}_{\operatorname{SO}(2m)}(J_{\circ}) \subset \operatorname{SO}(2m)$. Then $\mathfrak{m} = \mathfrak{u}(m)^{\perp} = \{A \in \mathfrak{so}(n) : AJ_{\circ} = -J_{\circ}A\}$ is irreducible, and for any compatible U(m)-structure $\xi = J$ on (M^{2m}, g) , we can compute, for all $A, B \in \Omega^2_{\mathfrak{m}}(M)$,

$$\langle A \diamond J, B \diamond J \rangle = \langle [A, J], [B, J] \rangle = \langle 2AJ, (-2)JB \rangle = 4tr(AJJB)$$

= $4\langle A, B \rangle$.

Moreover,

$$\nabla_X J = (T_X \diamond J) = -[T_X, J] = 2JT_X, \quad \forall X \in \mathfrak{X}(M),$$

since $T_X \in \Omega^2_{\mathfrak{u}(m)^{\perp}} \simeq \{A \in \mathfrak{so}(M) : AJ = -JA\}$. Thus,

$$T_X = -\frac{1}{2}J \nabla_X J, \quad \forall X \in \mathfrak{X}(M).$$

In particular,

$$|\nabla J|^2 = 4|T|^2.$$

Moreover, $\cdot \diamond J$ maps $\Omega_{\mathfrak{u}(m)^{\perp}}$ into itself, so that $\nabla_X J \in \Omega^2_{\mathfrak{u}(m)^{\perp}}$, $\forall X \in \mathfrak{X}(M)$.

Rough Laplacian and the diamond operator

Write $\Delta := -\nabla^* \nabla$, so that at the center of normal coordinates $\Delta = \nabla_k \nabla_k$.

Lemma

Suppose $Q \subset Fr(M,g)$ is a compatible H-structure with torsion T. If $\xi \in \Gamma(\mathcal{T}^{p,q}(TM))$ is stabilized by H then

$$\Delta \xi = \operatorname{div}_{g} T \diamond \xi + T_{k} \diamond (T_{k} \diamond \xi), \qquad (1.10)$$

where $(\operatorname{div}_g T)_{ij} := \nabla_k T_{k;ij} \in \Omega^2_{\mathfrak{m}}(M)$. In particular, if $H = \operatorname{Stab}_{\operatorname{SO}(n)}(\xi_\circ)$ and Q is then determined by a geometric structure ξ modelled on ξ_\circ , then $\exists c > 0$, depending only on (M,g) and H, such that if $\operatorname{div}_g T = 0$ then

$$|\Delta\xi| \leqslant c |\nabla\xi|^2. \tag{1.11}$$

If furthermore there is c > 0 such that $\langle A \diamond \xi, B \diamond \xi \rangle = c \langle A, B \rangle$ for all $A, B \in \Omega^2_{\mathfrak{m}}(M)$, i.e. if $c := \lambda_1 = \ldots = \lambda_k$ (e.g. if \mathfrak{m} is an irreducible H-module), then the decomposition (1.10) of $\Delta \xi$ is orthogonal.

General flows of *H*-structures

When M admits a H-structure ξ defined by one or several tensor fields which are stabilized by $H \subset SO(n)$, we saw in particular that Ω_h^2 is a subspace of ker $(\cdot \diamond \xi)$. Consequently, a general $GL(n, \mathbb{R})$ -variation of ξ can be written as:

$$rac{\partial}{\partial t}\xi = A \diamond \xi, \quad A \equiv A(t) = S(t) + C(t), \quad S(t) \in \Sigma^2, C(t) \in \Omega^2_{\mathfrak{m}} \subset \Omega^2.$$
 (1.12)

Moreover, if $\{\xi(t)\}_{t \in I \ni 0}$ is a family of *H*-structures evolving under (1.12), and if g(t) is the unique Riemannian metric on M^n determined by $\xi(t)$, then

$$\frac{\partial}{\partial t}g(t)=A(t)\diamond g(t)=2S(t).$$

In particular, the flow is isometric iff $S(t) \equiv 0$.

Dirichlet energy functionals

Suppose (M, g) is closed and let ξ be a compatible geometric *H*-structure. Consider the following energy functionals:

$$\mathcal{E}(\xi) := rac{1}{2} \int_M |T_\xi|^2 \mathrm{vol}_g \quad ext{and} \quad \mathcal{D}(\xi) := rac{1}{2} \int_M |
abla \xi|^2 \mathrm{vol}_g.$$

Then, by previous lemmas, there are $c, \tilde{c} > 0$ depending only on (M, g) and H such that

$$\tilde{c}\mathcal{E}(\xi) \leqslant \mathcal{D}(\xi) \leqslant c\mathcal{E}(\xi).$$

Moreover, under the assumption that $c := \lambda_1 = \ldots = \lambda_k$, i.e. if there is c > 0 such that $\langle A \diamond \xi, B \diamond \xi \rangle = c \langle A, B \rangle$ for all $A, B \in \Omega^2_{\mathfrak{m}}(M)$ (e.g. if \mathfrak{m} is an irreducible *H*-module), then

$$\mathcal{D}(\xi) = c\mathcal{E}(\xi).$$

First variation of the Dirichlet energy

Lemma

Suppose that $H = \operatorname{Stab}_{\mathrm{SO}(n)}(\xi_{\circ})$ is such that $\lambda_1 = \ldots = \lambda_k$ (e.g. when \mathfrak{m} is an irreducible H-module). If $\{\xi(t)\}$ is a smooth family of compatible H-structures on (M^n, g) , with $\xi(0) = \xi$ and $\frac{d}{dt}|_{t=0}\xi(t) = C \diamond \xi$, for some $C \in \Omega^2_{\mathfrak{m}}$, then

$$\frac{d}{dt}\Big|_{t=0}\mathcal{D}(\xi(t)) = -\int_{M} \langle C \diamond \xi, \operatorname{div}_{g} T \diamond \xi \rangle \operatorname{vol}_{g}.$$

Thus, the energy \mathcal{D} restricted to compatible H-structures on (M^n, g) has gradient $-\operatorname{div}_g T \diamond \xi$ at each point ξ .

Harmonic geometric structures

This motivates a natural harmonicity theory:

Definition

A family of compatible *H*-structures $\{\xi(t)\}_{t\in I}$ on (M, g), parameterised by a non-degenerate interval $I \subset \mathbb{R}$, is a solution to the *harmonic flow of H-structures* (or *harmonic H-flow* for short) if the following evolution equation holds for every $t \in I$:

$$\frac{\partial}{\partial t}\xi(t) = \operatorname{div}_{g} \mathcal{T}(t) \diamond \xi(t), \tag{HF}$$

where T(t) denotes the torsion of $\xi(t)$. Given a compatible *H*-structure ξ_0 on (M^n, g) , a solution to the harmonic flow of *H*-structures with *initial condition* (or *starting at*) ξ_0 is a solution of (HF) defined for every $t \in [0, \tau_0)$, for some $0 < \tau_0 \leq \infty$, and such that $\xi(0) = \xi_0$.

Definition

When ξ is a compatible *H*-structure on (M^n, g) , we say that ξ is *harmonic* when it has divergence-free torsion:

$$\operatorname{div}_{g} T = 0.$$

• The problem of fixing a metric g and looking for a "best" compatible H-structure dates back to Calabi–Gluck (U(3)-structures on S^6) and C. Wood in the 1990s; Wood introduced the general notion of harmonicity from the point of view of sections of twistor bundles. In the case $H = U(m) \subset SO(2m)$, i.e. for an almost complex structure J compatible with (M, g), the equation $\operatorname{div}_{\sigma} T = 0$ becomes

$$[\nabla^* \nabla J, J] = 0.$$

- González-Dávila and Martín Cabrera (2008) investigates general harmonic H-structures, with a focus on U(m)-structures, characterizing harmonicity according to each torsion class; when m = 3, T ∈ Λ¹ ⊗ u(m)[⊥] = W₁ ⊕ W₂ ⊕ W₃ ⊕ W₄, where W_i are irreducible U(m)-modules given by Gray–Hervella.
- The harmonic flow of G₂-structures was more recently investigated by Grigorian (2017, 2019), Bagaglini (2019), and Dwivedi–Gianniotis–Karigiannis (2019), while the harmonic flow of U(m)-structures was studied by He–Li (2019). The general harmonic flow of *H*-structures was introduced and investigated by Loubeau–Sá Earp (2019).
- More recent works include the Spin(7) case of the flow by Dwivedi–Loubeau–Sá Earp (2021), the work on harmonic Sp(2)-invariant G₂-structures on S⁷ by Loubeau–Moreno–Sá Earp–Saavedra (2022), and the study of the harmonic flow of quaternion-Kähler structures by Fowdar–Sá Earp (2023).

• The problem of fixing a metric g and looking for a "best" compatible H-structure dates back to Calabi–Gluck (U(3)-structures on S^6) and C. Wood in the 1990s; Wood introduced the general notion of harmonicity from the point of view of sections of twistor bundles. In the case $H = U(m) \subset SO(2m)$, i.e. for an almost complex structure J compatible with (M, g), the equation $\operatorname{div}_{\sigma} T = 0$ becomes

$$[\nabla^* \nabla J, J] = 0.$$

- González-Dávila and Martín Cabrera (2008) investigates general harmonic *H*-structures, with a focus on U(m)-structures, characterizing harmonicity according to each torsion class; when m = 3, $T \in \Lambda^1 \otimes \mathfrak{u}(m)^{\perp} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$, where \mathcal{W}_i are irreducible U(m)-modules given by Gray–Hervella.
- The harmonic flow of G₂-structures was more recently investigated by Grigorian (2017, 2019), Bagaglini (2019), and Dwivedi–Gianniotis–Karigiannis (2019), while the harmonic flow of U(m)-structures was studied by He–Li (2019). The general harmonic flow of *H*-structures was introduced and investigated by Loubeau–Sá Earp (2019).
- More recent works include the Spin(7) case of the flow by Dwivedi–Loubeau–Sá Earp (2021), the work on harmonic Sp(2)-invariant G₂-structures on S⁷ by Loubeau–Moreno–Sá Earp–Saavedra (2022), and the study of the harmonic flow of quaternion-Kähler structures by Fowdar–Sá Earp (2023).

• The problem of fixing a metric g and looking for a "best" compatible H-structure dates back to Calabi–Gluck (U(3)-structures on S^6) and C. Wood in the 1990s; Wood introduced the general notion of harmonicity from the point of view of sections of twistor bundles. In the case $H = U(m) \subset SO(2m)$, i.e. for an almost complex structure J compatible with (M, g), the equation $\operatorname{div}_{\sigma} T = 0$ becomes

$$[\nabla^* \nabla J, J] = 0.$$

- González-Dávila and Martín Cabrera (2008) investigates general harmonic *H*-structures, with a focus on U(m)-structures, characterizing harmonicity according to each torsion class; when m = 3, $T \in \Lambda^1 \otimes \mathfrak{u}(m)^{\perp} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$, where \mathcal{W}_i are irreducible U(m)-modules given by Gray–Hervella.
- The harmonic flow of G_2 -structures was more recently investigated by Grigorian (2017, 2019), Bagaglini (2019), and Dwivedi-Gianniotis-Karigiannis (2019), while the harmonic flow of U(m)-structures was studied by He-Li (2019). The general harmonic flow of *H*-structures was introduced and investigated by Loubeau-Sá Earp (2019).
- More recent works include the Spin(7) case of the flow by Dwivedi–Loubeau–Sá Earp (2021), the work on harmonic Sp(2)-invariant G₂-structures on S⁷ by Loubeau–Moreno–Sá Earp–Saavedra (2022), and the study of the harmonic flow of quaternion-Kähler structures by Fowdar–Sá Earp (2023).

The problem of fixing a metric g and looking for a "best" compatible H-structure dates back to Calabi–Gluck (U(3)-structures on S⁶) and C. Wood in the 1990s; Wood introduced the general notion of harmonicity from the point of view of sections of twistor bundles. In the case H = U(m) ⊂ SO(2m), i.e. for an almost complex structure J compatible with (M, g), the equation div_g T = 0 becomes

$$[\nabla^* \nabla J, J] = 0.$$

- González-Dávila and Martín Cabrera (2008) investigates general harmonic *H*-structures, with a focus on U(m)-structures, characterizing harmonicity according to each torsion class; when m = 3, $T \in \Lambda^1 \otimes \mathfrak{u}(m)^{\perp} = \mathcal{W}_1 \oplus \mathcal{W}_2 \oplus \mathcal{W}_3 \oplus \mathcal{W}_4$, where \mathcal{W}_i are irreducible U(m)-modules given by Gray–Hervella.
- The harmonic flow of G_2 -structures was more recently investigated by Grigorian (2017, 2019), Bagaglini (2019), and Dwivedi-Gianniotis-Karigiannis (2019), while the harmonic flow of U(m)-structures was studied by He-Li (2019). The general harmonic flow of *H*-structures was introduced and investigated by Loubeau-Sá Earp (2019).
- More recent works include the Spin(7) case of the flow by Dwivedi–Loubeau–Sá Earp (2021), the work on harmonic Sp(2)-invariant G₂-structures on S⁷ by Loubeau–Moreno–Sá Earp–Saavedra (2022), and the study of the harmonic flow of quaternion-Kähler structures by Fowdar–Sá Earp (2023).

Short-time existence and uniqueness of the harmonic flow

There is a natural isomorphism between $\pi : \operatorname{Fr}(M, g)/H \to M$ and the associated bundle $\operatorname{Fr}(M, g) \times_{\operatorname{SO}(n)} \operatorname{SO}(n)/H$, which fibrewise is an isometry with respect to the bi-invariant metric on $\operatorname{SO}(n)$. The induced one-to-one correspondence between sections $\sigma \in \Gamma(\operatorname{Fr}(M, g)/H)$ and $\operatorname{SO}(n)$ -equivariant maps $s : \operatorname{Fr}(M, g) \to \operatorname{SO}(n)/H$ identifies solutions to the harmonic section flow with $\operatorname{SO}(n)$ -equivariant solutions to the classical harmonic map heat flow for maps $\operatorname{Fr}(M, g) \to \operatorname{SO}(n)/H$, where the target space $\operatorname{SO}(n)/H$ is considered with its normal homogeneous Riemannian manifold structure.

Theorem (Loubeau–Sá Earp (2019))

Given any smooth compatible H-structure ξ_0 on (M^n, g) , there is a maximal time $\tau = \tau(\xi_0) \in (0, \infty]$ such that the harmonic H-flow with initial condition ξ_0 admits a unique smooth solution $\xi(t)$ for $t \in [0, \tau)$. Moreover, if $\tau < \infty$ then $\sup_M |\nabla \xi(t)| \to \infty$ as $t \to \tau$.

Assumptions for our analytical results on the harmonic flow

- $H = \operatorname{Stab}_{\operatorname{SO}(n)}(\xi_{\circ})$, where ξ_{\circ} is an element of a *r*-dimensional $\operatorname{SO}(n)$ -submodule $V \leq \oplus \mathcal{T}^{p,q}(\mathbb{R}^n)$. Furthermore, we assume that *H* is such that $\lambda_1 = \ldots = \lambda_k$, i.e. there is c > 0 such that $\langle A \diamond \xi, B \diamond \xi \rangle = c \langle A, B \rangle$, $\forall A, B \in \Omega^2_{\mathfrak{m}}(M)$.
- Suppose (Mⁿ, g) admits a compatible H-structure ξ₀ and let {ξ(t)}_{t∈[0,τ)} be a solution to the harmonic H-flow on (M, g) with initial condition ξ(0) = ξ₀:

$$\partial_t \xi = \operatorname{div}_g T \diamond \xi, \quad \xi(0) = \xi_0.$$

• Let $0 < r_M < \operatorname{inj}(M, g)$. Then, restricted to the geodesic ball $B_{r_M}(y)$ we can regard ξ as a tensor defined on $B_{r_M}(0) \times [0, \tau) \subset \mathbb{R}^n \times [0, \tau)$ via normal coordinates. Fix any $\tau_0 \in (0, \tau)$ and a cut-off function $\phi \in C_c^{\infty}(B_{r_M}(0))$ with $\phi|_{B_{\frac{r_M}{2}}(0)} \equiv 1$. For all $t \in (0, \tau_0)$ and $0 < r \leq \min\{\sqrt{\tau_0}/2, r_M\}$, we define

$$\Psi(r) \equiv \Psi_{(y,\tau_0)}(r) := \int_{\tau_0 - 4r^2}^{\tau_0 - r^2} \int_{\mathbb{R}^n} |\nabla \xi|^2 k_{(0,\tau_0)} \phi^2 \sqrt{\det(g)} dx dt$$

$\varepsilon\text{-regularity}$ along the flow

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

There exists a constant $\varepsilon_0 > 0$, depending only on (M^n, g) , the group H, and the energy of the initial data such that, if $\Psi_{(y,\tau_0)}(r) < \varepsilon_0$, then

$$\sup_{P_{\delta r}(y,\tau_0)} |\nabla \xi|^2 \leqslant 4(\delta r)^{-2},$$

where $P_{\delta R}$ is a parabolic neighbourhood, and the constant $\delta > 0$ depends only on the geometry and initial data.

The main ingredients to prove this result are:

• Almost monotonicity formula: $\forall 0 < R_1 \leq R_2 \leq \min\{\sqrt{\tau_0}/2, r_M\}$ and $\forall N > 1$,

$$\Psi(R_1)\leqslant C\Psi(R_2)+C\left(N^{n/2}(E_0+\sqrt{E_0})+rac{C}{\ln^2 N}
ight)(R_2-R_1).$$

• Bochner-type estimate for $e(\xi) := \frac{1}{2} |\nabla \xi|^2$:

$$(\partial_t - \Delta) e(\xi) \leqslant C_H(e(\xi)^2 + 1).$$

An energy gap theorem

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (M^n, g) be a closed Riemannian n-manifold admitting a compatible H-structure. Then there is a constant $\varepsilon_0(M^n, g, H) > 0$ such that if ξ is a compatible harmonic H-structure on (M^n, g) whose energy satisfies $\mathcal{D}(\xi) := \frac{1}{2} \|\nabla \xi\|_{L^2(M)}^2 < \varepsilon_0$, then ξ is actually torsion-free, i.e. $\nabla \xi = 0$.

Proof.

If not true, then \exists sequence $(\xi_k)_{k=1}^{\infty}$ of harmonic *H*-structures inducing *g* such that $\mathcal{D}(\xi_k) \to 0$ as $k \to \infty$ but $\nabla \xi_k \neq 0$ for all *k*. By the ε -regularity and Shi-type estimates, it follows that for $k \gg 1$ we have that $|\nabla^m \xi_k|$ is uniformly bounded $\forall m \in \mathbb{N}_0$. Therefore, up to taking a subsequence, $\xi_k \to \xi$ in C^{∞} and $\nabla \xi = 0$. Since ξ_k is harmonic and $\nabla \xi = 0$, there is a uniform c > 0 such that

$$|\Delta(\xi_k-\xi)|\leqslant c|
abla(\xi_k-\xi)|^2.$$

Combining this with integration by parts gives

$$\int_M \left|
abla (\xi_k - \xi)
ight|^2 = - \int_M \langle \xi_k - \xi, \Delta(\xi_k - \xi)
ight
angle \leqslant c \| \xi_k - \xi \|_{L^\infty(M)} \int_M \left|
abla (\xi_k - \xi)
ight|^2.$$

Since $\xi_k \to \xi$ as $k \to \infty$ in smooth topology, we get a contradiction.

A finite-time singularity result for the harmonic H-flow

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (M^n, g) be a closed oriented Riemannian n-manifold endowed with a compatible H-structure $\overline{\xi}$ whose isometric homotopy class $[\overline{\xi}]$ does not contain any torsion-free H-structure but

 $\inf_{\xi\in [\overline{\xi}]}\mathcal{D}(\xi)=0.$

Then there is a constant $\varepsilon_*(M, g, H) > 0$ such that if $\xi_0 \in [\xi]$ is such that $\mathcal{D}(\xi_0) < \varepsilon_*$, then the harmonic H-flow starting at ξ_0 develops a finite time singularity. Moreover, if $[0, \tau(\xi_0))$ denotes the maximal existence interval for the solution, then $\tau(\xi_0)^{n-2} \leq \mathcal{D}(\xi_0)$; in particular, $\tau(\xi_0) \to 0$ as $\mathcal{D}(\xi_0) \to 0$.

Example(s) of finite-time singularity for the harmonic H-flow

- $M := T^7$ endowed with the standard G₂-structure φ_0 inducing the flat metric g_0 .
- Frame bundle of (T^7, g_0) is trivial and so is the twistor bundle $\operatorname{Fr}(T^7, g_0)/\operatorname{G}_2 = T^7 \times SO(7)/\operatorname{G}_2 = T^7 \times \mathbb{RP}^7$ of G_2 -structures isometric to φ_0 .
- \therefore any G_2 -structure φ isometric to φ_0 can be thought of as a map from \mathcal{T}^7 to \mathbb{RP}^7 , and under such identification the standard G_2 -structure φ_0 corresponds to a constant map.
- Fix r_0 small enough so that the geodesic ball $B(p, r_0) \subset (T^7, g_0)$ is isometric to the Euclidean ball $B(0, r_0) \subset \mathbb{R}^7$, and consider an isometric G_2 -structure $\varphi \in [[\varphi_0]]$ which is the constant map φ_0 outside $B(p, r_0)$. In particular, we can think of φ (restricted to $B(p, r_0)$) as a map from the 7-sphere S^7 to \mathbb{RP}^7 . In this sense, the isometric homotopy class of φ then corresponds to an element of $\pi_7(\mathbb{RP}^7) = \pi_7(S^7) = \mathbb{Z}$, and $\varphi \in [\varphi_0]$ if and only if such an element is the trivial one. Choose φ such that its isometric homotopy class corresponds to any nonzero element in $\pi_7(\mathbb{RP}^7) = \mathbb{Z}$. Up to a deformation within its isometric hotomopy class, we can assume that φ is a smooth G_2 -structure, which by construction is isometric to φ_0 but $[\varphi] \neq 0 = [\varphi_0]$.

Example(s) of finite-time singularity for the harmonic H-flow

• $\forall r \in (0, r_0]$, let φ_r be the G₂-structure on T^7 such that $\varphi_r|_{X \setminus B(p,r)} = \varphi_0$, and

$$\varphi_r(x) := \varphi\left(\frac{xr_0}{r}\right), \quad \forall x \in B(p,r) \simeq B(0,r) \subset \mathbb{R}^7.$$

• φ_r is isometric to φ_0 and $\varphi_r \in [\varphi] \neq 0 = [\varphi_0]$. We compute the energy of φ_r :

$$2\mathcal{D}(\varphi_r) = \int_{B(p,r)} |\nabla \varphi_r|^2(x) dx \quad (\text{since } \varphi_r = \varphi_0 \text{ outside } B(p,r))$$
$$= \int_{B(p,r)} \left| \nabla \left(\varphi \left(\frac{xr_0}{r} \right) \right) \right|^2 dx \quad (\text{by the def of } \varphi_r)$$
$$= r_0^2 r^{-2} \int_{B(p,r)} |\nabla \varphi|^2 \left(\frac{xr_0}{r} \right) dx$$
$$= r_0^2 r^{-2} r_0^{-7} r^7 \int_{B(p,r_0)} |\nabla \varphi|^2(y) dy \quad (\text{by change of variables})$$
$$= r_0^{-5} r^5 \mathcal{D}(\varphi). \quad (\text{since } \varphi = \varphi_0 \text{ outside } B(p,r_0))$$

In particular, $\mathcal{D}(arphi_r)
ightarrow 0$ as r
ightarrow 0 and therefore

$$\inf_{\tilde{\varphi}\in [\varphi]}\mathcal{D}(\tilde{\varphi})=0.$$

Example(s) of finite-time singularity for the harmonic H-flow

- On the other hand, [φ] cannot contain any torsion-free G₂-structure, since any such would correspond to a constant map from T⁷ to ℝP⁷ and [φ] is non-trivial.
- Claim: For $r \ll 1$, the harmonic G₂-flow starting at φ_r has a finite time singularity.
- Indeed: if otherwise the flow φ(t) with φ(0) = φ_r exist for all time t > 0 then, since r ≪ 1, and thus D(φ_r) ≪ 1, it follows from the ε-regularity together with Shi-type estimates that φ(t) converges smoothly as t → ∞ to a divergence-free torsion G₂-structure φ_∞ ∈ [φ_r] = [φ]. In fact, if r ≪ 1 is small enough, φ_∞ would be torsion-free because of the energy gap and the fact that the energy is non-increasing along the flow. But φ_∞ being torsion-free implies that its homotopy class corresponds to that of a constant map from T⁷ to ℝP⁷, contradicting the non-triviality of [φ] ≠ 0 = [φ₀].
- Notice that although on the one hand the φ_r have arbitrarily small energy $\mathcal{D}(\varphi_r) \to 0$ as $r \to 0$, on the other hand the L^{∞} -norm of its torsion is blowing-up as $r \to 0$:

$$\|\nabla \varphi_r\|_{L^{\infty}(M)} = r_0 r^{-1} \|\nabla \varphi\|_{L^{\infty}(B(p,r_0))} \to \infty \quad \text{as } r \to 0.$$

Thus, this example also illustrates that a general long-time existence result for the harmonic flow under the hypothesis of small initial energy should take into account the L^{∞} -norm of the initial torsion in the smallness condition.

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (M^n, g) be a closed, oriented Riemannian n-manifold admitting a compatible H-structure. Then for any given constant K > 0, there is a universal constant $\varepsilon(K) > 0$, depending only on K, the geometry (M, g) and H, such that if ξ_0 is a compatible H-structure on (M^n, g) satisfying

- (i) $\|\nabla \xi_0\|_{L^{\infty}(M)} \leq K$ and
- (ii) $\mathcal{D}(\xi_0) := \frac{1}{2} \| \nabla \xi_0 \|_{L^2(M)}^2 < \varepsilon(K)$,

then the harmonic H-flow with initial condition ξ_0 exists for all time $t \ge 0$ and converges smoothly to a torsion-free H-structure as $t \to \infty$.

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (M^n, g) be a closed, oriented Riemannian n-manifold admitting a compatible H-structure ξ_0 . Then, for every $\delta > 0$ there is $\varepsilon = \varepsilon(\delta, M^n, g, H) > 0$ such that if $\|\nabla \xi_0\|_{L^{\infty}(M)} < \varepsilon$ then the harmonic H-flow $\xi(t)$ starting from ξ_0 exists for all time $t \ge 0$ and converges smoothly to a harmonic H-structure ξ_{∞} which furthermore satisfies $\|\nabla \xi_{\infty}\|_{L^{\infty}(M)} < \delta$.

Stability of torsion-free structures along the flow

Theorem (F-, Loubeau, Moreno, Sá Earp (2022))

Let (M^n, g) be a closed, oriented Riemannian n-manifold admitting a compatible H-structure. Then the following holds:

(i) There is a constant κ(M, g, H) > 0 such that if ξ₀ is a compatible H-structure satisfying ||∇ξ₀||_{L[∞](M)} < κ then the harmonic H-flow starting at ξ₀ exists for all t ≥ 0 and converges smoothly to a torsion-free H-structure ξ_∞ as t → ∞.

(ii) If (Mⁿ, g) admits a compatible torsion-free H-structure ξ, then for all δ > 0 there is some ε(δ, M, g, H) > 0 such that for any compatible H-structure ξ₀ on (Mⁿ, g) with ||ξ₀ - ξ||_{C¹(M)} < ε the harmonic H-flow with initial condition ξ₀ exists for all t ≥ 0, satisfies the estimate ||ξ_t - ξ||_{C¹(M)} < δ for all t ≥ 0, and converges smoothly to a torsion-free H-structure ξ_∞ as t → ∞.

Current projects and open questions

- $H = SU(m) \subset SO(2m)$ case (the $H = Sp(k) \subset SO(4k)$ case is being studied by Udhav Fowdar).
- The singularity structure of the harmonic *H*-flow: what are the types of singularities that can occur in each *H*-flow for different groups *H*? Produce examples of (shrinking or expanding) solitons.
- What are the topological obstructions (if any), according to the group *H*, for the existence of *divergence-free H*-structures?
- For each specific H, what is the role played by the initial condition in the behavior of the harmonic H-flow? Is there any special type of structures that are preserved along the harmonic H-flow? E.g., for H = G₂, if φ₀ is a coclosed G₂-structure, is this property preserved along the harmonic G₂-flow with initial condition φ₀?
- Study the G_2 Laplacian co-flow with coclosed and $\operatorname{div}_g T = 0$ initial condition.