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Introduction

B String/M-theory is a leading candidate for a consistent theory of
quantum gravity.

B Atlow energies (critical) string theory reduces to 10d supergravity




Introduction

B A great part of our knowledge of the theory (dualities,
holography, branes, black holes,...) comes from the study of its
supersymmetric, (bosonic) supergravity vacua (solutions)

® 10d supergravity contains (in addition to the graviton) fermions
and higher-rank antisymmetric tensors (flux).



Introduction

® |n the absence of flux, susy vacua of the theory are of the form
R x M where M is a Calabi-Yau manifold.
® (Good control of the physics, beautiful mathematics.

B Powerful tools from math. AG.

% Candelas, Horowztz, Strominger, Witten, 1985
* Strominger, Witten, 1935
% bttp://bep.itp.tuwien.ac.at/-kreuzer/CY/




Introduction

® (Good physical reasons to turn on the flux (generic case).

B A famous no-go theorem excludes Minkowski flux vacua,
provided:

® absence of sources, no (or mild) singularities
B COMpPACtNEss
® two-derivative actions

® the Strong Energy Condition is obeyed by the 1od/nid theory

% Gibbons, 1934
* Mualdacena & Nuniez, 2000



Introduction

® |n the presence of flux: susy vacua of the form
AdS4 x Mg where Mg is not special-holonomy.

® [Holography, moduli stabilisation, de Sitter uplifts, ...
% Freund, Rubin, 1980
% Duff, Pope, 1982

% Nilsson, Pope, 1984
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% Nilsson, Pope, 1984

B (G-structures, generalized (complex) geometry, ...
* Gauntlett, Kim, Martelli, Waldram, 2001
* Graia, Minasian, Petrini, Tomasiello, 2004



Introduction

B [ T-vacuaare A/ = 1 solutions of (massive) 1od IIA supergravity

of the form AdS4 X Mg with Mg in a certain subclass of half-flat.
% D. Liist & DT, 2004
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Introduction

B [ T-vacuaare A/ = 1 solutions of 1od IIA supergravity
of the form AdS4 X Mg with Mg in a certain subclass of half-flat.
% D. Liist & DT, 2004

® [Holographically dual to 3d Chern-Simons theories
* Gaiotto & Tomasiello, 2010

B | ow-cenergy limit of certain String | 'heory orientifold vacua
exhibiting moduli stabilization.

% DeWolfe, Giryavets, Kachru, laylor, 2005

% Acharya, Benini, Valandro, 2007

B Relevant to the question of scale separation and the swampland
% Many recent papers
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B Characterization of 1.1 solutions



I1A supergravity

B [IA (bosonic) action

1 1 1
G _ 10 (—R “(06)? 4 3¢/2 2
2@0/ tV9( B 500) + 5
| 1 6—(/5[{2 | 1 €¢/2G2 _|_ 1m265¢/2) _|_ S
" 9.3 " 9.4l 9 ©5

® Bianchi identities
dFf =mH ; dH=0; dG=HAF

B Supersymmetry of the (bosonic) vacuum

1 1
Ve = 1—6me5¢/4FM6 |

0 = (1ome5¢/4 _ 3e3¢/47 W FMN ) :

63¢/4FMNPFNP€ + ...



4d supersymmetric solutions

® An SUB)-structure on Mg

= A complex decomposable 3-form €2
® A real 2-form J such that

y
ONJT =0 QAQ*:gj/\J/\J;éO

B [Lquivalences:
= An SUB)-structure on Mg
= Existence on Mgof (g, Z) with c1(Z) = 0
s [xistence on Mg of (g, n) with 1) pure & nowhere-vanishing



4d supersymmetric solutions

® [.ink with supergravity:
® Susy parameter: € ~ ( Q@7
s SUB)-structure: () ~ nY3)N ; J ~ 77T7(2)77

B ‘| orsion classes:

3
dJ = §Im(W1*Q) + Wy AN J + W3

dQ:W1J/\J+W2/\J+Q/\W5*
where:
Wi~101; Wo~8D8 Ws~686; Wy~303; Wy~3



4d supersymmetric solutions

® [.ink with supergravity:
® Susy parameter: € ~ ( Q@7
s SUB)-structure: () ~ nY3)N ; J ~ 77T7(2)77

® | orsion classes: 1

V = —

m7] 9

1 . . S
__1_6 (4W19mn T QWprmn =+ 47/W2mn T ZWSmqupqn) YT

where:
Wi~101; Wo~8D8 Ws~686; Wy~303; Wy~3

(W(l 0) + Wsom, —cc) N




4d supersymmetric solutions

® [.ink with supergravity:

B Susy equations:

V= F-n
® Compare with:
V=W .n

B Conclusion:

® 'T'he flux is expressed in terms of torsion classes: F' ~ W

® Constraints on the torsion classes.



4d supersymmetric solutions

® What about the equations of motion?

An zntegrability theorem guarantees that (potentially in the presence
of calibrated sources) the Linstein, dilaton and 3-form eom’s

automatically follow from susy, the (generalized) Bianchi identities
and a certain (mild) assumption on the form of the solution.

% D. Liist & DT, 2004
% P Koerber & DT, 2007

* D. Liist, E Marchesano, L. Martucci & DT, 2008
% D. Prins & DT, 2013



"I'he 1.1 solutions

® T'he 1od metric is of the form AdS, x Mg
B An SU@G)-structure on Mg with torsion classes:

3
A7 = —SiWReQ: dQ=Wi JAJT+W; AJ

B Fluxes: 7 — 2;n€¢ReQ
Fy = iz‘e—qufJ +ie” Wy
Fy = %ewwl_ml“ ’ 3172)1'] o
% = (%m2 + %\Wl‘\Q)em

B Geometrical problem: construct Mg with this structure!



"I'he 1.1 solutions

® Generically there are D6/0O6 sources:
dF 9 -+ mH — j6
2 2
S ¢
D

B, Absence of sources equivalent to:

AW, oc ReQ2 5 3[W, |* — [W5 |7 >0

3
je = ( — §|W1_\26_¢)Reﬂ +ie” PdW,




"I'he 1.1 solutions

® '|'he Nearly Kébler limit:

3
dJ = —JiW ReQ; dQ=WJAJ

® solutions without sources always possible
= four homogencous spaces: S° x §°, CP?, Tw(CP?), S°

% K. Bebrndt, M. Cvetic, 2004

® ‘I'he Nearly Calabi-Yau limit:
dJ=0; dQ=W, AJ

® solutions without sources never possible
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B Constructions of 1.1 solutions



Explicit examples: cosets

B M of the form G/H with H subgroup of SUG)

G H
G, SU(3)
SU(3)xSU(2)?2 SU(3)

Sp(2) S(U(2)xU(1))

SUB)xU(1)* | S(U(2)xU(1))
SU(2)3xU(1) | S(U(2)xU(1))

SU(3) U(1)xU(1)
SU(2)2xU(1)%2 | U(1)xU(1)
SU(3)xU(1) SU(2)
SU(2)3 SU(2)
SU(2)?xU(1) U(1)
SU(2)? 1

* D. Liist, P Koerber & DT, 2008



Explicit examples: cosets

® (Given a basis of the algebras and a coset representative L
{Hot, a=1,...,dim(H) ; {K;}, i=1,...,dim(G) — dim(H)
a coframe e’ on G/H is defined
L7 YL = e'K; + w*H,
B Ap-form ¢ = %Qbil...ip el A A e s left-invariant ift
fja[z'l@Q...ip]j =0,  ¢4..i, = const.
where (24, Hy] = fCapHe,
Ha, K] = f1ailC
i, IC;] = fFailh + [ Ha -

B | he exterior diftferential of a left-invariant form is left-invariant




Explicit examples: cosets

® Construct the most general left-invariant (.J, £2) for each Mg

® Calculate (d.J, dS2)

® [mpose 7 C W & W,

SU(Z) X SU(Z) U(?;Jx(%)(l) S(U(SZI))E?%(I)) ﬁ(zﬁ SU(S3I)J>(<2I}J(1)
# of parameters 2 4 4 3 2 4
Wy #0 No Yes Yes Yes No Yes
7% o ReQ2 Yes No Yes Yes Yes No

® Topologics: S° x 3, Tw(CP?), CP?, S% §° x §!

* D. Liist, P Koerber & DT, 2008




Explicit examples: cosets

® Construct the most general left-invariant (.J, £2) for each Mg

® Calculate (d.J, dS2)
® [mpose 7 C W & W,
® Impose AW, oc ReQ) ;  3|W, |* = |[W, |*>0

SU@2)xSU?2) | o Sb(2) o

U(1)xU(1) | S(U(2)xU(1)) | SU(3)
# of parameters 1 3 2 1
W, #0 No Yes Yes No

* D. Liist, P Koerber & DT, 2008



Explicit examples: nilmanifolds

B N\o solutions in the absence of sources

B ['wo solutions with sources: on T°and the Iwasawa manifold

m Related solution: T over K3

* P Koerber & DT, 2008
% Caviezel, Koerber, Kors, Liist, DT & Zagermann, 2008



Explicit examples: twistor spaces

B A two-parameter solution on

o~ DU
W)=t <o

B misses one parameter with respect to the coset description

B A two-parameter solution on

Tw(S%) = CP? =

* A. lomasiello, 2007
* Feng Xu, 2000



Explicit examples: sphere bundles

® LT vacua on S*(B,) with By positive Kihler-Einstein
® [ .ocal SU() structure on By
OANGD*=2]N]: jAG=0:

dP=67: dj=0; do=iPAX
= Global SU3) structure

J = \h\2j+%K/\K* QO =RWAK
where

j:=cosf j+sinf N(eVw)

w:= —sinf j + cosf N(eVD) +1i (VD)
K = fdf + ig(dy + P)

% R. Terrisse & DT, 2017



Algebraic geometry constructions
(can we eat our cake and have it too?)

B Susy selects a non-integrable complex structure on Mg
but Mg may also admit another, integrable complex structure.

® Use the underlying algebra-geometric description of Mg
Example: 3d smooth, compact toric varieties

% M. Larfors, D. Liist & DT, 2010



Algebraic geometry constructions
(can we eat our cake and have it too?)

B A d-dimensional SC'T'V corresponds to a fan 2.

B A fanis a (certain) collection of (certain) cones generated by

GX)={vi,...vn}; v; € N=Z°

B (Classification of 2d SCTV

® Partial classification of (minimal) 3d SCTV

s CIP? bundles over CP?

s CP! bundles over 2d SCTV
m complete results for n <

% Mziyake & Oda; Oda, 1978

® Some work needed to read oft G(2)



Algebraic geometry constructions
(can we eat our cake and have it too?)

B A SCTV can also be described as a symplectic quotient
Maq = p~(0)/U(1)*

® Moment maps
n

ut =) QP - ¢
i=1
a=1,...5: (2%,...,2")eC”; d=n-—s

®m U(1)® actionon C"

® Unique topology for £ € K a4



Algebraic geometry constructions
(can we eat our cake and have it too?)

® Given G(X) we determine the U (1)® charges by solving
> Q=0
i=1

B Forms ® on C" that are gauge-invariant and vertical
Limya®=0; tya® =15.P =0 where V* = ZQ?ziﬁzi

1

descend to well-defined forms on Moy



Algebraic geometry constructions
(can we eat our cake and have it too?)

m Sufficient conditions for global SU3) structure on SCTV
(1,0)-form K on C"such that

. P(K)=K
1
2 QU(K) = 5Q"(%)
3. |K|* =2
B [ .ocal SUG) structure on SCTV
) ~ ~ 7
- —K*Q: i=J—-KANK*
YT ) >
where



Algebraic geometry constructions
(can we eat our cake and have it too?)

® Global SUB) structure on SCTV
: 12

J =y Zg KANK*;, Q=afe"K*Aw

B | orsion classes

® Must be computed case-by-case

® Generally W, # 0

® Special points with Wy, Ws, W, =0
® Exception: the LT vacuum on CP*



Algebraic geometry constructions
(can we eat our cake and have it too?)

® [Formalism applicable to non-compact toric varieties

% Chen, Dasgupta, Franche, Katz, latar, 2010

® Many further examples of K constructed
* M. Larfors, 2013

B Potentially relaxing the non-vanishing condition on K
% S. Dabbolkar, 2013



Algebraic geometry constructions
(can we eat our cake and have it too?)

® What about the LT vacuum on Tw(CP?) :

B Modification of the prescription to obtain a global SU(3)
structure on (toric) CP* bundles over arbitrary 2d SCTV

® Toric 3d U(z) charges
A_(a —n" 0
Qf_(o 1 1)’ fa €N
where g;* are the toric 2d U(1) charges

® Prescription works for n® = g q;
i=1

® (5eneric torsion classes

% R. Terrisse & DT, 2017



Algebraic geometry constructions

(can we eat our cake and have it too?)

® SUQ) structures on CICY from Machine Learning
* Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruehle, 2021

proposed the SU@3) ansatz
J = Z CL,;JZ' X () = Alﬂo + AQQS

i=1
definedon T Cp™ q% q}( -
- CP™™ | ¢t qr

subject to

A7 + |As]? = Z Niikaia;ag

1,J,k=1

2.0

(
r —



Algebraic geometry constructions
(can we eat our cake and have it too?)

® SUQ) structures on CICY from Machine Learning
* Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruehle, 2021

where the are A, ;5 are read off of
3
Ti N Ty ATk = iRl A QG
® The ansatz would produce I.'T" SU3) structures for
a; = const. ; Ay = —A7 + const.

® Unfortunately the ansatz of Anderson etal does not satisty complex
decomposability of €.

% M. Larfors, A. Lukas, F. Rueble & DT, 2022



Conclusions—wishlist

® [T structures are well-motivated in supergravity/string theory
® Still few known explicit examples

B SUQG) decomposable ansitze on CYs and/or toric varieties ?

® [nterplay between math. AG and math.DG

® Connection with Hitchin uplift to G2. Use 7d technology?

B xistence theorems? Deformations?

B o all [ 'T-structure manifolds without sources admit a NK limit?

B Ground for new discoveries!



