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» Using R” 22 im O one can define the cross product
uxv=im(u-v),
which satisfies
() uxv=—vxu, (i)yuxvLu (i) |uxvP=uPV? - (u V)3

and follows that ¢o(u, v, w) = (u x v, w) is alternating.
» Define the positive 3-forms as

A3 = GL(7,R) - o C A* (is open),

and G, = Stab(Lpo).
> © € A2 ~ a Riemannian metric g, (€x: gy, = (-, -))-
> M’ a spin 7-manifold, a Go-structure on M is a ¢ € Q%(M) such that:

VpeEM, ¢peNSTyM.

From now on, let 1) = %, € Q*(M).
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£(A) = / |Fal?volg,
M

where F4 € Q%(M, gp) is the curvature of A. lts critical points satisfy

daF4 =0, Biachiidentity, valid for any connection, and
da x F4 =0, Yang-Mills equation.

» A connection A is a Go-instanton if
*FA:—FA/\L,O = FA/\llJZO,

which sits in an elliptic complex if ¢ is coclosed (dy = 0).
» If ¢ is nearly parallel (dy = 10v), Gz-instantons are Yang-Mills

daxFa=—daFaNe—FaNndp=—10FaNny=0.

» However, for 5 # 0, they need not be local minima of £

£(A) = /M(FA AFA) A @+ [Fa Al



Go-Instantons

» Why Gz-Instantons? Develop counting type invariant for Go-manifolds.



Go-Instantons

» Why Gz-Instantons? Develop counting type invariant for Go-manifolds.

» Why nearly parallel? Interesting, and easier, testing ground.



Go-Instantons

» Why Gz-Instantons? Develop counting type invariant for Go-manifolds.
» Why nearly parallel? Interesting, and easier, testing ground.

If ¢ is nearly parallel:
» Ggq-instantons are Yang-Mills connections (as we saw).

» Any complex line bundle L admits a unique Gz-instanton (the connection
whose curvature is the harmonic representative of ¢ (L)).

~ Just like for Go-manifolds.



Go-Instantons

» Why Gz-Instantons? Develop counting type invariant for Go-manifolds.
» Why nearly parallel? Interesting, and easier, testing ground.

If ¢ is nearly parallel:
» Ggq-instantons are Yang-Mills connections (as we saw).

» Any complex line bundle L admits a unique Gz-instanton (the connection
whose curvature is the harmonic representative of ¢ (L)).

~ Just like for Go-manifolds.

But there are many differences as well!
(~ ex: nontrivial moduli and non-minimality).



Go-Instantons

» Why Gz-Instantons? Develop counting type invariant for Go-manifolds.
» Why nearly parallel? Interesting, and easier, testing ground.

If ¢ is nearly parallel:
» Ggq-instantons are Yang-Mills connections (as we saw).

» Any complex line bundle L admits a unique Gz-instanton (the connection
whose curvature is the harmonic representative of ¢ (L)).

~ Just like for Go-manifolds.

But there are many differences as well!
(~ ex: nontrivial moduli and non-minimality).

Examples of nearly parallel ¢?



Aloff-Wallach spaces

> Let k,/ € Z and My, = SU(3)/U(1),;, where

efk@ 0 0
0o €’ o , andk+/+m=0.

0 0 eimG



Aloff-Wallach spaces

> Let k,/ € Z and My, = SU(3)/U(1),;, where

efk@ 0 0
0o €’ o , andk+/+m=0.

0 0 eirnG

» Consider the left-invariant 1-forms {w1, ..., w7, £}, with £ the dual to the
infinitesimal generator of U(1)x,.



Aloff-Wallach spaces

> Let k,/ € Z and My, = SU(3)/U(1),;, where

efk@ 0 0
0o €’ o , andk+/+m=0.

0 0 eimG

» Consider the left-invariant 1-forms {w1, ..., w7, £}, with £ the dual to the
infinitesimal generator of U(1)x,.
The most general coclosed, homogeneous G-structure is

© = ABC(wi23 — wie7 + wasy — wase) — Dwa A (A2wis + BPuns + CPway),

for (A, B, C, D) € C = (R\0)*/Z2.



Aloff-Wallach spaces

> Let k,/ € Z and My, = SU(3)/U(1),;, where

efk@ 0 0
0o €’ o , andk+/+m=0.

0 0 eimG

» Consider the left-invariant 1-forms {w1, ..., w7, £}, with £ the dual to the
infinitesimal generator of U(1)x,.
The most general coclosed, homogeneous G-structure is

© = ABC(wi23 — wie7 + wasy — wase) — Dwa A (A2wis + BPuns + CPway),

for (A, B, C, D) € C = (R\0)*/Z3. Its associated the metric is

9o = A (w12 +w§) + B? (wg +w§) +c? (wg —l—oﬁ) + D?w2.
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> Let k,/ € Z and My, = SU(3)/U(1),;, where

e/k@ 0 0
0o €’ o , andk+/+m=0.

0 0 eimG

» Consider the left-invariant 1-forms {w1, ..., w7, £}, with £ the dual to the
infinitesimal generator of U(1)x,.
The most general coclosed, homogeneous G-structure is

© = ABC(wi23 — wie7 + wasy — wase) — Dwa A (A2wis + BPuns + CPway),

for (A, B, C, D) € C = (R\0)*/Z3. Its associated the metric is
9o = A (w12 +w§) + B? (wg +w§) +c? (wg —|—w$) + D?w2.
> ¢ nearly parallel < quartic equation on (A, B, C, D) € C, with exactly 2

solutions for k # +/. These, correspond to strictly nearly parallel ¢!
(Cabrera, Monar and Swann)
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Go-Instantons with G = U(1)

= Uniqueness of G,-instantons on complex line bundles does not generalize to
arbitrary coclosed ¢.

However, for the generic ¢ € C, each line bundle still admits a unique invariant
Go-instanton.

Now we go to G = SO(3)!
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» Homogeneous SO(3)-bundles are parametrized by A, : U(1)x,; — SO(3)
Pn = SU(3) X (u(t).;,An) SO(3).
> Fix a splitting su(3) = u(1)x, @ m and the linear map
dAn @ 0 : su(3) — s0(3).
» The "canonical” invariant connection on P, is its left-invariant extension
Al =d @0 € Q'(SU(8),50(3)).

Any other invariant connection on P, can be written as A = A7 + A, for A the
left-invariant extension of a U(1), ;-equivariant map

Az (m, Ad) — (s0(3),Ad o Ap).
» Decompose into irreducible U(1), -representations
MERGCk 1 DCmPDCrmk, 50(3)=RDCp,

and Schur’s lemma tells you the possible nonzero entries in A.
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For k # |, we can construct irreducible connections A if and only if n is either
k —1,1—m,or m—I. In each of these cases there is a continuous function

on:C—=R,

i — V6 AD k—1
with for example o_;(¢) = 3 (g - m@ A+ KT

Theorem (Classification)

Irreducible, invariant, Gz-instantons on P, exist if and only if:
» niseitherk — 1,1 — m, orm— k, and
> on(e) > 0.

In this case, there are exactly 2 such instantons.

» What happens as we continuously deform ¢ € C?

Theorem (Deforming the G»-structure)

Letn=k — | and {¢(S)}ser C C a continuous family satisfying ox—i(¢(s)) > 0,
fors < 0 and ox—i(¢(S)) < 0, fors > 0. Then, as s /0, the two irreducible
G.-instantons on P, merge into the same reducible and obstructed one.
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» Recall that for k # +/ there are exactly two inequivalent and homogeneous
strictly nearly parallel G,-structures which we denote by ¢*.

» On X3, we have
AT =2827, Bt =2.197, C* =1.848, D' = 2.668,

o_1(¢") = —1857.936, og(¢") = —753.703, o_7(¢") = 107.336,

while
A~ =1.698, B~ =2.658, C~ =2.707, D~ = —1.708,

o_1(¢”) = 705.209, 05(p ) = —1726.540, 0_7(p~ ) = —1812.541.

» Thus, irreducible, invariant Go-instantons exist in both cases, but live on
topologically distinct bundles:

(mod2) , pi(E-7) =11 (mod 19), and
(mod 2) , pi(E-1) =1 (mod 19).

» This may be a general phenomena for the strictly nearly parallel
Go-structures on these Xi,; (with k # +/). We did not try very hard to prove it!
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Go-instantons on X

» When k = I, there are similar classification results for Gz-instantons with
G =U(1),S0(3).

» Now there are two nearly parallel Gz-structures in C, only one of which is
strictly nearly parallel »°, the other one being tri-Sasakian .

Theorem (Distinguishing ¢! and S"°)
There are no irreducible invariant Gz -instantons with G = SO(3) for ©*, but such
Gz-instantons do exist for ¢°™.



Thank you!



