# Shopping for $\mathrm{G}_{2}$-instantons on Aloff-Wallach spaces 

# Gonçalo Oliveira on joint work with Gavin Ball 

Departamento de Matemática, IST Lisboa

Pau, France, June 2023

## $\mathrm{G}_{2}$-structures

- Using $\mathbb{R}^{7} \cong \operatorname{im} \mathbb{O}$ one can define the cross product

$$
u \times v=\operatorname{im}(u \cdot v)
$$

## $\mathrm{G}_{2}$-structures

- Using $\mathbb{R}^{7} \cong \mathrm{im} \mathbb{O}$ one can define the cross product

$$
u \times v=\operatorname{im}(u \cdot v)
$$

which satisfies
(i) $u \times v=-v \times u$,
(ii) $u \times v \perp u$,
(iii) $|u \times v|^{2}=|u|^{2}|v|^{2}-\langle u, v\rangle^{2}$,
and follows that $\varphi_{0}(u, v, w)=\langle u \times v, w\rangle$ is alternating.

## $\mathrm{G}_{2}$-structures

- Using $\mathbb{R}^{7} \cong \mathrm{im} \mathbb{O}$ one can define the cross product

$$
u \times v=\operatorname{im}(u \cdot v)
$$

which satisfies
(i) $u \times v=-v \times u$,
(ii) $u \times v \perp u$,
(iii) $|u \times v|^{2}=|u|^{2}|v|^{2}-\langle u, v\rangle^{2}$,
and follows that $\varphi_{0}(u, v, w)=\langle u \times v, w\rangle$ is alternating.

- Define the positive 3-forms as

$$
\Lambda_{+}^{3}:=\mathrm{GL}(7, \mathbb{R}) \cdot \varphi_{0} \subset \Lambda^{3} \quad \text { (is open) }
$$

and $\mathrm{G}_{2}=\operatorname{Stab}\left(\varphi_{0}\right)$.

## $\mathrm{G}_{2}$-structures

- Using $\mathbb{R}^{7} \cong \mathrm{im} \mathbb{O}$ one can define the cross product

$$
u \times v=\operatorname{im}(u \cdot v)
$$

which satisfies

$$
\text { (i) } u \times v=-v \times u, \quad \text { (ii) } u \times v \perp u, \quad \text { (iii) }|u \times v|^{2}=|u|^{2}|v|^{2}-\langle u, v\rangle^{2}
$$

and follows that $\varphi_{0}(u, v, w)=\langle u \times v, w\rangle$ is alternating.

- Define the positive 3-forms as

$$
\Lambda_{+}^{3}:=\mathrm{GL}(7, \mathbb{R}) \cdot \varphi_{0} \subset \Lambda^{3} \quad \text { (is open) }
$$

and $\mathrm{G}_{2}=\operatorname{Stab}\left(\varphi_{0}\right)$.

- $\varphi \in \Lambda_{+}^{3} \rightsquigarrow$ a Riemannian metric $g_{\varphi}\left(\right.$ ex: $\left.g_{\varphi_{0}}=\langle\cdot, \cdot\rangle\right)$.


## $\mathrm{G}_{2}$-structures

- Using $\mathbb{R}^{7} \cong \mathrm{im} \mathbb{D}$ one can define the cross product

$$
u \times v=\operatorname{im}(u \cdot v)
$$

which satisfies
(i) $u \times v=-v \times u$,
(ii) $u \times v \perp u$,
(iii) $|u \times v|^{2}=|u|^{2}|v|^{2}-\langle u, v\rangle^{2}$,
and follows that $\varphi_{0}(u, v, w)=\langle u \times v, w\rangle$ is alternating.

- Define the positive 3-forms as

$$
\Lambda_{+}^{3}:=\operatorname{GL}(7, \mathbb{R}) \cdot \varphi_{0} \subset \Lambda^{3} \quad \text { (is open) }
$$

and $\mathrm{G}_{2}=\operatorname{Stab}\left(\varphi_{0}\right)$.

- $\varphi \in \Lambda_{+}^{3} \rightsquigarrow$ a Riemannian metric $g_{\varphi}$ (ex: $g_{\varphi_{0}}=\langle\cdot, \cdot\rangle$ ).
- $M^{7}$ a spin 7-manifold, a $\mathrm{G}_{2}$-structure on $M$ is a $\varphi \in \Omega^{3}(M)$ such that:

$$
\forall p \in M, \quad \varphi_{p} \in \Lambda_{+}^{3} T_{p}^{*} M
$$

From now on, let $\psi={ }_{\varphi} \varphi \in \Omega^{4}(M)$.

## Nearly parallel $\mathrm{G}_{2}$-structures

- $\nabla \varphi$ determined by $d \varphi$ and $d \psi$ which are given by

$$
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}, \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi
$$

for some $\tau_{i} \in \Omega^{i}(M)$ called torsion forms.

## Nearly parallel $\mathrm{G}_{2}$-structures

- $\nabla \varphi$ determined by $d \varphi$ and $d \psi$ which are given by

$$
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}, \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi,
$$

for some $\tau_{i} \in \Omega^{i}(M)$ called torsion forms.

- $\varphi$ is nearly parallel if and only if

$$
\tau_{1}=\tau_{2}=\tau_{3}=0, \text { and } \tau_{0} \neq 0 \Leftrightarrow d \varphi=\tau_{0} \psi, \tau_{0} \in \mathbb{R} \backslash\{0\}
$$

For these, $g_{\varphi}$ is Einstein with $s_{\varphi} \sim \tau_{0}^{2}$.

## Nearly parallel $\mathrm{G}_{2}$-structures

- $\nabla \varphi$ determined by $d \varphi$ and $d \psi$ which are given by

$$
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}, \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi,
$$

for some $\tau_{i} \in \Omega^{i}(M)$ called torsion forms.

- $\varphi$ is nearly parallel if and only if

$$
\tau_{1}=\tau_{2}=\tau_{3}=0, \text { and } \tau_{0} \neq 0 \Leftrightarrow d \varphi=\tau_{0} \psi, \tau_{0} \in \mathbb{R} \backslash\{0\}
$$

For these, $g_{\varphi}$ is Einstein with $s_{\varphi} \sim \tau_{0}^{2}$.

- Other important case (for today): when $\varphi$ is coclosed, i.e. $d \psi=0$, or

$$
\tau_{1}=\tau_{2}=0
$$

## Nearly parallel $\mathrm{G}_{2}$-structures

- $\nabla \varphi$ determined by $d \varphi$ and $d \psi$ which are given by

$$
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}, \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi,
$$

for some $\tau_{i} \in \Omega^{i}(M)$ called torsion forms.

- $\varphi$ is nearly parallel if and only if

$$
\tau_{1}=\tau_{2}=\tau_{3}=0, \text { and } \tau_{0} \neq 0 \Leftrightarrow d \varphi=\tau_{0} \psi, \tau_{0} \in \mathbb{R} \backslash\{0\}
$$

For these, $g_{\varphi}$ is Einstein with $s_{\varphi} \sim \tau_{0}^{2}$.

- Other important case (for today): when $\varphi$ is coclosed, i.e. $d \psi=0$, or

$$
\tau_{1}=\tau_{2}=0
$$

Relation to holonomy?

## Nearly parallel $\mathrm{G}_{2}$-structures

- $\nabla \varphi$ determined by $d \varphi$ and $d \psi$ which are given by

$$
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}, \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi,
$$

for some $\tau_{i} \in \Omega^{i}(M)$ called torsion forms.

- $\varphi$ is nearly parallel if and only if

$$
\tau_{1}=\tau_{2}=\tau_{3}=0, \text { and } \tau_{0} \neq 0 \Leftrightarrow d \varphi=\tau_{0} \psi, \tau_{0} \in \mathbb{R} \backslash\{0\}
$$

For these, $g_{\varphi}$ is Einstein with $s_{\varphi} \sim \tau_{0}^{2}$.

- Other important case (for today): when $\varphi$ is coclosed, i.e. $d \psi=0$, or

$$
\tau_{1}=\tau_{2}=0
$$

Relation to holonomy?

- If $\varphi$ is nearly parallel, the metric cone $\mathbb{R}_{r}^{+} \times M^{7}$ with $g_{C}=d r^{2}+r^{2} g_{\varphi}$, has holonomy $\subsetneq \mathrm{SO}(8)$, so by Berger and Gallot must be

$$
\{1\} \subset \operatorname{Sp}(2) \subset \operatorname{SU}(4) \subset \operatorname{Spin}(7) \subset S O(8),
$$

and $g_{\varphi}$ is tri-Sasakian, Sasaki-Einstein, strictly nearly parallel respectively.

## Nearly parallel $\mathrm{G}_{2}$-structures

- $\nabla \varphi$ determined by $d \varphi$ and $d \psi$ which are given by

$$
d \varphi=\tau_{0} \psi+3 \tau_{1} \wedge \varphi+* \tau_{3}, \quad d \psi=4 \tau_{1} \wedge \psi+\tau_{2} \wedge \varphi,
$$

for some $\tau_{i} \in \Omega^{i}(M)$ called torsion forms.

- $\varphi$ is nearly parallel if and only if

$$
\tau_{1}=\tau_{2}=\tau_{3}=0, \text { and } \tau_{0} \neq 0 \Leftrightarrow d \varphi=\tau_{0} \psi, \tau_{0} \in \mathbb{R} \backslash\{0\}
$$

For these, $g_{\varphi}$ is Einstein with $s_{\varphi} \sim \tau_{0}^{2}$.

- Other important case (for today): when $\varphi$ is coclosed, i.e. $d \psi=0$, or

$$
\tau_{1}=\tau_{2}=0
$$

Relation to holonomy?

- If $\varphi$ is nearly parallel, the metric cone $\mathbb{R}_{r}^{+} \times M^{7}$ with $g_{C}=d r^{2}+r^{2} g_{\varphi}$, has holonomy $\subsetneq \mathrm{SO}(8)$, so by Berger and Gallot must be

$$
\{1\} \subset \operatorname{Sp}(2) \subset \operatorname{SU}(4) \subset \operatorname{Spin}(7) \subset S O(8),
$$

and $g_{\varphi}$ is tri-Sasakian, Sasaki-Einstein, strictly nearly parallel respectively.

## $\mathrm{G}_{2}$-Instantons

- $\mathcal{A}$ connection on a G-bundle $P$ over ( $M, \varphi$ ). Its Yang-Mills energy is

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left|F_{\mathcal{A}}\right|^{2} \operatorname{vol}_{g_{\varphi}},
$$

where $F_{\mathcal{A}} \in \Omega^{2}\left(M, g_{P}\right)$ is the curvature of $\mathcal{A}$.

## $\mathrm{G}_{2}$-Instantons

- $\mathcal{A}$ connection on a G-bundle $P$ over $(M, \varphi)$. Its Yang-Mills energy is

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left|F_{\mathcal{A}}\right|^{2} \operatorname{vol}_{g_{\varphi}},
$$

where $F_{\mathcal{A}} \in \Omega^{2}\left(M, \mathfrak{g}_{P}\right)$ is the curvature of $\mathcal{A}$. Its critical points satisfy

$$
\begin{aligned}
d_{\mathcal{A}} F_{\mathcal{A}} & =0, \quad \text { Biachi identity, valid for any connection, and } \\
d_{\mathcal{A}} * F_{\mathcal{A}} & =0, \quad \text { Yang-Mills equation. }
\end{aligned}
$$

## $\mathrm{G}_{2}$-Instantons

- $\mathcal{A}$ connection on a G-bundle $P$ over $(M, \varphi)$. Its Yang-Mills energy is

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left|F_{\mathcal{A}}\right|^{2} \operatorname{vol}_{g_{\varphi}},
$$

where $F_{\mathcal{A}} \in \Omega^{2}\left(M, \mathfrak{g}_{P}\right)$ is the curvature of $\mathcal{A}$. Its critical points satisfy

$$
\begin{aligned}
d_{\mathcal{A}} F_{\mathcal{A}} & =0, \quad \text { Biachi identity, valid for any connection, and } \\
d_{\mathcal{A}} * F_{\mathcal{A}} & =0, \quad \text { Yang-Mills equation. }
\end{aligned}
$$

- A connection $\mathcal{A}$ is a $\mathrm{G}_{2}$-instanton if

$$
* F_{\mathcal{A}}=-F_{\mathcal{A}} \wedge \varphi \Leftrightarrow F_{\mathcal{A}} \wedge \psi=0
$$

## $\mathrm{G}_{2}$-Instantons

- $\mathcal{A}$ connection on a G-bundle $P$ over $(M, \varphi)$. Its Yang-Mills energy is

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left|F_{\mathcal{A}}\right|^{2} \operatorname{vol}_{g_{\varphi}},
$$

where $F_{\mathcal{A}} \in \Omega^{2}\left(M, \mathfrak{g}_{P}\right)$ is the curvature of $\mathcal{A}$. Its critical points satisfy

$$
\begin{aligned}
d_{\mathcal{A}} F_{\mathcal{A}} & =0, \quad \text { Biachi identity, valid for any connection, and } \\
d_{\mathcal{A}} * F_{\mathcal{A}} & =0, \quad \text { Yang-Mills equation. }
\end{aligned}
$$

- A connection $\mathcal{A}$ is a $\mathrm{G}_{2}$-instanton if

$$
* F_{\mathcal{A}}=-F_{\mathcal{A}} \wedge \varphi \Leftrightarrow F_{\mathcal{A}} \wedge \psi=0
$$

which sits in an elliptic complex if $\varphi$ is coclosed ( $d \psi=0$ ).

## $\mathrm{G}_{2}$-Instantons

- $\mathcal{A}$ connection on a G-bundle $P$ over $(M, \varphi)$. Its Yang-Mills energy is

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left|F_{\mathcal{A}}\right|^{2} \operatorname{vol}_{g_{\varphi}},
$$

where $F_{\mathcal{A}} \in \Omega^{2}\left(M, \mathfrak{g}_{P}\right)$ is the curvature of $\mathcal{A}$. Its critical points satisfy

$$
\begin{aligned}
d_{\mathcal{A}} F_{\mathcal{A}} & =0, \quad \text { Biachi identity, valid for any connection, and } \\
d_{\mathcal{A}} * F_{\mathcal{A}} & =0, \quad \text { Yang-Mills equation. }
\end{aligned}
$$

- A connection $\mathcal{A}$ is a $\mathrm{G}_{2}$-instanton if

$$
* F_{\mathcal{A}}=-F_{\mathcal{A}} \wedge \varphi \Leftrightarrow F_{\mathcal{A}} \wedge \psi=0
$$

which sits in an elliptic complex if $\varphi$ is coclosed ( $d \psi=0$ ).

- If $\varphi$ is nearly parallel ( $d \varphi=\tau_{0} \psi$ ), $\mathrm{G}_{2}$-instantons are Yang-Mills

$$
d_{\mathcal{A}} * F_{\mathcal{A}}=-d_{\mathcal{A}} F_{\mathcal{A}} \wedge \varphi-F_{\mathcal{A}} \wedge d \varphi=-\tau_{0} F_{\mathcal{A}} \wedge \psi=0 .
$$

## $\mathrm{G}_{2}$-Instantons

- $\mathcal{A}$ connection on a G-bundle $P$ over $(M, \varphi)$. Its Yang-Mills energy is

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left|F_{\mathcal{A}}\right|^{2} \operatorname{vol}_{g_{\varphi}},
$$

where $F_{\mathcal{A}} \in \Omega^{2}\left(M, \mathfrak{g}_{P}\right)$ is the curvature of $\mathcal{A}$. Its critical points satisfy

$$
\begin{aligned}
d_{\mathcal{A}} F_{\mathcal{A}} & =0, \quad \text { Biachi identity, valid for any connection, and } \\
d_{\mathcal{A}} * F_{\mathcal{A}} & =0, \quad \text { Yang-Mills equation. }
\end{aligned}
$$

- A connection $\mathcal{A}$ is a $\mathrm{G}_{2}$-instanton if

$$
* F_{\mathcal{A}}=-F_{\mathcal{A}} \wedge \varphi \Leftrightarrow F_{\mathcal{A}} \wedge \psi=0
$$

which sits in an elliptic complex if $\varphi$ is coclosed ( $d \psi=0$ ).

- If $\varphi$ is nearly parallel ( $d \varphi=\tau_{0} \psi$ ), $\mathrm{G}_{2}$-instantons are Yang-Mills

$$
d_{\mathcal{A}} * F_{\mathcal{A}}=-d_{\mathcal{A}} F_{\mathcal{A}} \wedge \varphi-F_{\mathcal{A}} \wedge d \varphi=-\tau_{0} F_{\mathcal{A}} \wedge \psi=0 .
$$

- However, for $\tau_{0} \neq 0$, they need not be local minima of $\mathcal{E}$

$$
\mathcal{E}(\mathcal{A})=\int_{M}\left\langle F_{\mathcal{A}} \wedge F_{\mathcal{A}}\right\rangle \wedge \varphi+\left\|F_{\mathcal{A}} \wedge \psi\right\|_{L^{2}}^{2} .
$$

## $\mathrm{G}_{2}$-Instantons

- Why $\mathrm{G}_{2}$-Instantons? Develop counting type invariant for $\mathrm{G}_{2}$-manifolds.


## $\mathrm{G}_{2}$-Instantons

- Why $\mathrm{G}_{2}$-Instantons? Develop counting type invariant for $\mathrm{G}_{2}$-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.


## $\mathrm{G}_{2}$-Instantons

- Why $\mathrm{G}_{2}$-Instantons? Develop counting type invariant for $\mathrm{G}_{2}$-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.

If $\varphi$ is nearly parallel:

- $\mathrm{G}_{2}$-instantons are Yang-Mills connections (as we saw).
- Any complex line bundle $L$ admits a unique $\mathrm{G}_{2}$-instanton (the connection whose curvature is the harmonic representative of $\left.c_{1}(L)\right)$.
$\rightsquigarrow$ Just like for $\mathrm{G}_{2}$-manifolds.


## $\mathrm{G}_{2}$-Instantons

- Why $\mathrm{G}_{2}$-Instantons? Develop counting type invariant for $\mathrm{G}_{2}$-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.

If $\varphi$ is nearly parallel:

- $\mathrm{G}_{2}$-instantons are Yang-Mills connections (as we saw).
- Any complex line bundle $L$ admits a unique $\mathrm{G}_{2}$-instanton (the connection whose curvature is the harmonic representative of $\left.c_{1}(L)\right)$.
$\rightsquigarrow$ Just like for $\mathrm{G}_{2}$-manifolds.
But there are many differences as well!
( $\rightsquigarrow$ ex: nontrivial moduli and non-minimality).


## $\mathrm{G}_{2}$-Instantons

- Why $\mathrm{G}_{2}$-Instantons? Develop counting type invariant for $\mathrm{G}_{2}$-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.

If $\varphi$ is nearly parallel:

- $\mathrm{G}_{2}$-instantons are Yang-Mills connections (as we saw).
- Any complex line bundle $L$ admits a unique $\mathrm{G}_{2}$-instanton (the connection whose curvature is the harmonic representative of $\left.c_{1}(L)\right)$.
$\rightsquigarrow$ Just like for $\mathrm{G}_{2}$-manifolds.
But there are many differences as well!
( $\rightsquigarrow$ ex: nontrivial moduli and non-minimality).
Examples of nearly parallel $\varphi$ ?


## Aloff-Wallach spaces

- Let $k, I \in \mathbb{Z}$ and $M_{k, l}=\operatorname{SU}(3) / \mathrm{U}(1)_{k, l}$, where

$$
\left(\begin{array}{ccc}
e^{i k \theta} & 0 & 0 \\
0 & e^{i \theta \theta} & 0 \\
0 & 0 & e^{i m \theta}
\end{array}\right), \quad \text { and } k+I+m=0
$$

## Aloff-Wallach spaces

- Let $k, l \in \mathbb{Z}$ and $M_{k, l}=\operatorname{SU}(3) / \mathrm{U}(1)_{k, l}$, where

$$
\left(\begin{array}{ccc}
e^{i k \theta} & 0 & 0 \\
0 & e^{i \theta \theta} & 0 \\
0 & 0 & e^{i m \theta}
\end{array}\right), \quad \text { and } k+I+m=0
$$

- Consider the left-invariant 1 -forms $\left\{\omega_{1}, \ldots, \omega_{7}, \xi\right\}$, with $\xi$ the dual to the infinitesimal generator of $\mathrm{U}(1)_{k, l}$.


## Aloff-Wallach spaces

- Let $k, I \in \mathbb{Z}$ and $M_{k, l}=\operatorname{SU}(3) / \mathrm{U}(1)_{k, l}$, where

$$
\left(\begin{array}{ccc}
e^{i k \theta} & 0 & 0 \\
0 & e^{i \theta \theta} & 0 \\
0 & 0 & e^{i m \theta}
\end{array}\right), \quad \text { and } k+I+m=0
$$

- Consider the left-invariant 1 -forms $\left\{\omega_{1}, \ldots, \omega_{7}, \xi\right\}$, with $\xi$ the dual to the infinitesimal generator of $\mathrm{U}(1)_{k, l}$.
The most general coclosed, homogeneous $\mathrm{G}_{2}$-structure is

$$
\varphi=A B C\left(\omega_{123}-\omega_{167}+\omega_{257}-\omega_{356}\right)-D \omega_{4} \wedge\left(A^{2} \omega_{15}+B^{2} \omega_{26}+C^{2} \omega_{37}\right),
$$

for $(A, B, C, D) \in \mathcal{C}=(\mathbb{R} \backslash 0)^{4} / \mathbb{Z}_{2}^{2}$.

## Aloff-Wallach spaces

- Let $k, I \in \mathbb{Z}$ and $M_{k, l}=\operatorname{SU}(3) / \mathrm{U}(1)_{k, l}$, where

$$
\left(\begin{array}{ccc}
e^{i k \theta} & 0 & 0 \\
0 & e^{i \theta \theta} & 0 \\
0 & 0 & e^{i m \theta}
\end{array}\right), \quad \text { and } k+I+m=0
$$

- Consider the left-invariant 1 -forms $\left\{\omega_{1}, \ldots, \omega_{7}, \xi\right\}$, with $\xi$ the dual to the infinitesimal generator of $\mathrm{U}(1)_{k, l}$.
The most general coclosed, homogeneous $\mathrm{G}_{2}$-structure is

$$
\varphi=A B C\left(\omega_{123}-\omega_{167}+\omega_{257}-\omega_{356}\right)-D \omega_{4} \wedge\left(A^{2} \omega_{15}+B^{2} \omega_{26}+C^{2} \omega_{37}\right),
$$

for $(A, B, C, D) \in \mathcal{C}=(\mathbb{R} \backslash 0)^{4} / \mathbb{Z}_{2}^{2}$. Its associated the metric is

$$
g_{\varphi}=A^{2}\left(\omega_{1}^{2}+\omega_{5}^{2}\right)+B^{2}\left(\omega_{2}^{2}+\omega_{6}^{2}\right)+C^{2}\left(\omega_{3}^{2}+\omega_{7}^{2}\right)+D^{2} \omega_{4}^{2} .
$$

## Aloff-Wallach spaces

- Let $k, l \in \mathbb{Z}$ and $M_{k, l}=\operatorname{SU}(3) / \mathrm{U}(1)_{k, l}$, where

$$
\left(\begin{array}{ccc}
e^{i k \theta} & 0 & 0 \\
0 & e^{i \theta \theta} & 0 \\
0 & 0 & e^{i m \theta}
\end{array}\right), \quad \text { and } k+I+m=0
$$

- Consider the left-invariant 1 -forms $\left\{\omega_{1}, \ldots, \omega_{7}, \xi\right\}$, with $\xi$ the dual to the infinitesimal generator of $\mathrm{U}(1)_{k, l}$.
The most general coclosed, homogeneous $\mathrm{G}_{2}$-structure is

$$
\varphi=A B C\left(\omega_{123}-\omega_{167}+\omega_{257}-\omega_{356}\right)-D \omega_{4} \wedge\left(A^{2} \omega_{15}+B^{2} \omega_{26}+C^{2} \omega_{37}\right),
$$

for $(A, B, C, D) \in \mathcal{C}=(\mathbb{R} \backslash 0)^{4} / \mathbb{Z}_{2}^{2}$. Its associated the metric is

$$
g_{\varphi}=A^{2}\left(\omega_{1}^{2}+\omega_{5}^{2}\right)+B^{2}\left(\omega_{2}^{2}+\omega_{6}^{2}\right)+C^{2}\left(\omega_{3}^{2}+\omega_{7}^{2}\right)+D^{2} \omega_{4}^{2} .
$$

- $\varphi$ nearly parallel $\Leftrightarrow$ quartic equation on $(A, B, C, D) \in \mathcal{C}$, with exactly 2 solutions for $k \neq \pm$. These, correspond to strictly nearly parallel $\varphi$ ! (Cabrera, Monar and Swann)


## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$

- The duals of $\xi$ and $\omega_{4}$ generate the maximal torus $\mathrm{T}^{2} \subset \mathrm{SU}(3)$


## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$

- The duals of $\xi$ and $\omega_{4}$ generate the maximal torus $\mathrm{T}^{2} \subset \mathrm{SU}(3)$ and an invariant $\mathrm{U}(1)$-connection can be written as

$$
\mathcal{A}=n \xi+b \omega_{4} \in \Omega^{1}(\operatorname{SU}(3), \mathfrak{u}(1)),
$$

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^{2}\left(X_{k, l}, \mathbb{Z}\right)$.

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$

- The duals of $\xi$ and $\omega_{4}$ generate the maximal torus $\mathrm{T}^{2} \subset \mathrm{SU}(3)$ and an invariant $\mathrm{U}(1)$-connection can be written as

$$
\mathcal{A}=n \xi+b \omega_{4} \in \Omega^{1}(\operatorname{SU}(3), \mathfrak{u}(1)),
$$

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^{2}\left(X_{k, l}, \mathbb{Z}\right)$.

- Write $\psi=-D \omega_{4} \wedge \Upsilon+\frac{1}{2} \omega^{2}$, with $(\Upsilon, \omega)$ inducing a Hermitian str. on $\frac{\mathrm{SU}(3)}{\mathrm{T}^{2}}$.


## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$

- The duals of $\xi$ and $\omega_{4}$ generate the maximal torus $\mathrm{T}^{2} \subset \mathrm{SU}(3)$ and an invariant $\mathrm{U}(1)$-connection can be written as

$$
\mathcal{A}=n \xi+b \omega_{4} \in \Omega^{1}(\operatorname{SU}(3), \mathfrak{u}(1)),
$$

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^{2}\left(X_{k, l}, \mathbb{Z}\right)$.

- Write $\psi=-D \omega_{4} \wedge \Upsilon+\frac{1}{2} \omega^{2}$, with $(\Upsilon, \omega)$ inducing a Hermitian str. on $\frac{\mathrm{SU}(3)}{\mathrm{T}^{2}}$.
- Turns out that $d \xi \wedge \Upsilon=0=d \omega_{4} \wedge \Upsilon$ always, while

$$
\begin{aligned}
d \xi & \wedge \omega^{2} \sim \Delta \omega^{3} \text { and } d \omega_{4} \wedge \omega^{2} \sim \Gamma \omega^{3} \text { where, } \\
\Delta & =A^{2} B^{2} I+A^{2} C^{2} k+B^{2} C^{2} m, \\
\Gamma & =A^{2} B^{2}(m-k)+A^{2} C^{2}(I-m)+B^{2} C^{2}(k-l) .
\end{aligned}
$$

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$

- The duals of $\xi$ and $\omega_{4}$ generate the maximal torus $\mathrm{T}^{2} \subset \mathrm{SU}(3)$ and an invariant $\mathrm{U}(1)$-connection can be written as

$$
\mathcal{A}=n \xi+b \omega_{4} \in \Omega^{1}(\operatorname{SU}(3), \mathfrak{u}(1)),
$$

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^{2}\left(X_{k, l}, \mathbb{Z}\right)$.

- Write $\psi=-D \omega_{4} \wedge \Upsilon+\frac{1}{2} \omega^{2}$, with $(\Upsilon, \omega)$ inducing a Hermitian str. on $\frac{\mathrm{SU}(3)}{\mathrm{T}^{2}}$.
- Turns out that $d \xi \wedge \Upsilon=0=d \omega_{4} \wedge \Upsilon$ always, while

$$
\begin{aligned}
d \xi & \wedge \omega^{2} \sim \Delta \omega^{3} \text { and } d \omega_{4} \wedge \omega^{2} \sim \Gamma \omega^{3} \text { where, } \\
\Delta & =A^{2} B^{2} I+A^{2} C^{2} k+B^{2} C^{2} m, \\
\Gamma & =A^{2} B^{2}(m-k)+A^{2} C^{2}(I-m)+B^{2} C^{2}(k-l) .
\end{aligned}
$$

## Proposition

- If $\Delta \neq 0$, each line bundle admits a unique invariant $\mathrm{G}_{2}$-instanton;
- If $\Delta=0$ and $\Gamma \neq 0$, the only $\mathrm{G}_{2}$-instantons live on the trivial line bundle;
- If $\Delta=0=\Gamma, \exists$ a real 1 -parameter family of $\mathrm{G}_{2}$-instantons on any line bundle.


## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$



## Proposition

- If $\Delta \neq 0$, each line bundle admits a unique invariant $\mathrm{G}_{2}$-instanton;
- If $\Delta=0$ and $\Gamma \neq 0$, the only $\mathrm{G}_{2}$-instantons live on the trivial line bundle;
- If $\Delta=0=\Gamma, \exists$ a real 1 -parameter family of $\mathrm{G}_{2}$-instantons on any line bundle.


## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$


$\Rightarrow$ Uniqueness of $\mathrm{G}_{2}$-instantons on complex line bundles does not generalize to arbitrary coclosed $\varphi$.

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$


$\Rightarrow$ Uniqueness of $\mathrm{G}_{2}$-instantons on complex line bundles does not generalize to arbitrary coclosed $\varphi$. However, for the generic $\varphi \in \mathcal{C}$, each line bundle still admits a unique invariant $\mathrm{G}_{2}$-instanton.

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{U}(1)$

$\Rightarrow$ Uniqueness of $\mathrm{G}_{2}$-instantons on complex line bundles does not generalize to arbitrary coclosed $\varphi$. However, for the generic $\varphi \in \mathcal{C}$, each line bundle still admits a unique invariant $\mathrm{G}_{2}$-instanton.

Now we go to $\mathrm{G}=\mathrm{SO}(3)$ !

## Invariant $\mathrm{SO}(3)$ connections on $X_{k, I}$

- Homogeneous $\mathrm{SO}(3)$-bundles are parametrized by $\lambda_{n}: \mathrm{U}(1)_{k, l} \rightarrow \mathrm{SO}(3)$

$$
P_{n}=\mathrm{SU}(3) \times_{\left(\mathrm{U}(1)_{k, l}, \lambda_{n}\right)} \mathrm{SO}(3)
$$

## Invariant $\mathrm{SO}(3)$ connections on $X_{k, I}$

- Homogeneous $\mathrm{SO}(3)$-bundles are parametrized by $\lambda_{n}: \mathrm{U}(1)_{k, l} \rightarrow \mathrm{SO}(3)$

$$
P_{n}=\mathrm{SU}(3) \times_{\left(\mathrm{U}(1)_{k, l}, \lambda_{n}\right)} \mathrm{SO}(3)
$$

- Fix a splitting $\mathfrak{s u}(3)=\mathfrak{u}(1)_{k, I} \oplus \mathfrak{m}$ and the linear map

$$
d \lambda_{n} \oplus 0: \mathfrak{s u}(3) \rightarrow \mathfrak{s o}(3)
$$

## Invariant $\mathrm{SO}(3)$ connections on $X_{k, I}$

- Homogeneous $\mathrm{SO}(3)$-bundles are parametrized by $\lambda_{n}: \mathrm{U}(1)_{k, I} \rightarrow \mathrm{SO}(3)$

$$
P_{n}=\mathrm{SU}(3) \times_{\left(\mathrm{U}(1)_{k, l}, \lambda_{n}\right)} \mathrm{SO}(3)
$$

- Fix a splitting $\mathfrak{s u}(3)=\mathfrak{u}(1)_{k, I} \oplus \mathfrak{m}$ and the linear map

$$
d \lambda_{n} \oplus 0: \mathfrak{s u}(3) \rightarrow \mathfrak{s o}(3)
$$

- The "canonical" invariant connection on $P_{n}$ is its left-invariant extension

$$
\mathcal{A}_{c}^{n}=d \lambda_{n} \oplus 0 \in \Omega^{1}(\mathrm{SU}(3), \mathfrak{s o}(3))
$$

## Invariant $\mathrm{SO}(3)$ connections on $X_{k, I}$

- Homogeneous $\mathrm{SO}(3)$-bundles are parametrized by $\lambda_{n}: \mathrm{U}(1)_{k, I} \rightarrow \mathrm{SO}(3)$

$$
P_{n}=\mathrm{SU}(3) \times_{\left(\mathrm{U}(1)_{k, l}, \lambda_{n}\right)} \mathrm{SO}(3)
$$

- Fix a splitting $\mathfrak{s u}(3)=\mathfrak{u}(1)_{k, I} \oplus \mathfrak{m}$ and the linear map

$$
d \lambda_{n} \oplus 0: \mathfrak{s u}(3) \rightarrow \mathfrak{s o}(3)
$$

- The "canonical" invariant connection on $P_{n}$ is its left-invariant extension

$$
\mathcal{A}_{c}^{n}=d \lambda_{n} \oplus 0 \in \Omega^{1}(\mathrm{SU}(3), \mathfrak{s o}(3))
$$

Any other invariant connection on $P_{n}$ can be written as $\mathcal{A}=\mathcal{A}_{c}^{n}+\Lambda$, for $\Lambda$ the left-invariant extension of a $\mathrm{U}(1)_{k, l}$-equivariant map

$$
\Lambda:(\mathfrak{m}, \operatorname{Ad}) \rightarrow\left(\mathfrak{s o}(3), \operatorname{Ad} \circ \lambda_{n}\right)
$$

## Invariant $\mathrm{SO}(3)$ connections on $X_{k, I}$

- Homogeneous $\mathrm{SO}(3)$-bundles are parametrized by $\lambda_{n}: \mathrm{U}(1)_{k, I} \rightarrow \mathrm{SO}(3)$

$$
P_{n}=\mathrm{SU}(3) \times_{\left(\mathrm{U}(1)_{k, l}, \lambda_{n}\right)} \mathrm{SO}(3)
$$

- Fix a splitting $\mathfrak{s u}(3)=\mathfrak{u}(1)_{k, I} \oplus \mathfrak{m}$ and the linear map

$$
d \lambda_{n} \oplus 0: \mathfrak{s u}(3) \rightarrow \mathfrak{s o}(3)
$$

- The "canonical" invariant connection on $P_{n}$ is its left-invariant extension

$$
\mathcal{A}_{c}^{n}=d \lambda_{n} \oplus 0 \in \Omega^{1}(\mathrm{SU}(3), \mathfrak{s o}(3))
$$

Any other invariant connection on $P_{n}$ can be written as $\mathcal{A}=\mathcal{A}_{c}^{n}+\Lambda$, for $\Lambda$ the left-invariant extension of a $\mathrm{U}(1)_{k, l}$-equivariant map

$$
\Lambda:(\mathfrak{m}, \operatorname{Ad}) \rightarrow\left(\mathfrak{s o}(3), \operatorname{Ad} \circ \lambda_{n}\right)
$$

- Decompose into irreducible $\mathrm{U}(1)_{k, l}$-representations

$$
\mathfrak{m} \cong \mathbb{R} \oplus \mathbb{C}_{k-l} \oplus \mathbb{C}_{l-m} \oplus \mathbb{C}_{m-k}, \quad \mathfrak{s o}(3) \cong \mathbb{R} \oplus \mathbb{C}_{n}
$$

and Schur's lemma tells you the possible nonzero entries in $\Lambda$.

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{SO}(3)$

For $k \neq I$, we can construct irreducible connections $A$ if and only if $n$ is either $k-I, I-m$, or $m-I$. In each of these cases there is a continuous function

$$
\sigma_{n}: \mathcal{C} \rightarrow \mathbb{R}
$$

with for example $\sigma_{k-I}(\varphi)=3\left(\frac{m}{2}-\frac{\sqrt{6}}{\sqrt{k^{2}+l^{2}+m^{2}}} \frac{A D}{B C}\right) \Delta+\frac{k-1}{2} \Gamma$.

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{SO}(3)$

For $k \neq I$, we can construct irreducible connections $A$ if and only if $n$ is either $k-I, I-m$, or $m-I$. In each of these cases there is a continuous function

$$
\sigma_{n}: \mathcal{C} \rightarrow \mathbb{R}
$$

with for example $\sigma_{k-I}(\varphi)=3\left(\frac{m}{2}-\frac{\sqrt{6}}{\sqrt{k^{2}+l^{2}+m^{2}}} \frac{A D}{B C}\right) \Delta+\frac{k-l}{2} \Gamma$.

## Theorem (Classification)

 Irreducible, invariant, $\mathrm{G}_{2}$-instantons on $P_{n}$ exist if and only if:- $n$ is either $k-I, I-m$, or $m-k$, and
- $\sigma_{n}(\varphi)>0$.

In this case, there are exactly 2 such instantons.

## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{SO}(3)$

For $k \neq I$, we can construct irreducible connections $A$ if and only if $n$ is either $k-I, I-m$, or $m-I$. In each of these cases there is a continuous function

$$
\sigma_{n}: \mathcal{C} \rightarrow \mathbb{R}
$$

with for example $\sigma_{k-I}(\varphi)=3\left(\frac{m}{2}-\frac{\sqrt{6}}{\sqrt{k^{2}+l^{2}+m^{2}}} \frac{A D}{B C}\right) \Delta+\frac{k-l}{2} \Gamma$.

## Theorem (Classification)

 Irreducible, invariant, $\mathrm{G}_{2}$-instantons on $P_{n}$ exist if and only if:- $n$ is either $k-I, I-m$, or $m-k$, and
- $\sigma_{n}(\varphi)>0$.

In this case, there are exactly 2 such instantons.

- What happens as we continuously deform $\varphi \in \mathcal{C}$ ?


## $\mathrm{G}_{2}$-Instantons with $\mathrm{G}=\mathrm{SO}(3)$

For $k \neq I$, we can construct irreducible connections $A$ if and only if $n$ is either $k-I, I-m$, or $m-I$. In each of these cases there is a continuous function

$$
\sigma_{n}: \mathcal{C} \rightarrow \mathbb{R}
$$

with for example $\sigma_{k-l}(\varphi)=3\left(\frac{m}{2}-\frac{\sqrt{6}}{\sqrt{k^{2}+l^{2}+m^{2}}} \frac{A D}{B C}\right) \Delta+\frac{k-l}{2} \Gamma$.

## Theorem (Classification)

Irreducible, invariant, $\mathrm{G}_{2}$-instantons on $P_{n}$ exist if and only if:
$-n$ is either $k-I, I-m$, or $m-k$, and

- $\sigma_{n}(\varphi)>0$.

In this case, there are exactly 2 such instantons.

- What happens as we continuously deform $\varphi \in \mathcal{C}$ ?


## Theorem (Deforming the $\mathrm{G}_{2}$-structure)

Let $n=k-I$ and $\{\varphi(s)\}_{s \in \mathbb{R}} \subset \mathcal{C}$ a continuous family satisfying $\sigma_{k-I}(\varphi(s))>0$, for $s<0$ and $\sigma_{k-I}(\varphi(s))<0$, for $s>0$. Then, as $s \nearrow 0$, the two irreducible $G_{2}$-instantons on $P_{n}$ merge into the same reducible and obstructed one.

## Example: $P_{6}$ on $X_{1,-5}$

- $\varphi(A) \in \mathcal{C}$, the $\mathrm{G}_{2}$-structures with $B=C=D=1$.
- Existence of irreducible $\mathrm{G}_{2}$-instantons is controlled by

$$
\sigma_{6}(\varphi(A))=\left(A^{2}-1\right)(12 \sqrt{7} A-42)>0, \text { i.e. for } A^{2}<1 \text { or } A>\sqrt{7} / 2 \text {. }
$$

## Example: $P_{6}$ on $X_{1,-5}$

- $\varphi(A) \in \mathcal{C}$, the $\mathrm{G}_{2}$-structures with $B=C=D=1$.
- Existence of irreducible $\mathrm{G}_{2}$-instantons is controlled by

$$
\sigma_{6}(\varphi(A))=\left(A^{2}-1\right)(12 \sqrt{7} A-42)>0, \text { i.e. for } A^{2}<1 \text { or } A>\sqrt{7} / 2 \text {. }
$$



## Example: $P_{6}$ on $X_{1,-5}$



- Analogous to a family of stable bundles becoming polystable as the Kähler structure varies.


## Example: $P_{6}$ on $X_{1,-5}$



- Analogous to a family of stable bundles becoming polystable as the Kähler structure varies.


## Example: Distinguishing strictly nearly parallel $\mathrm{G}_{2}$-structures

- Recall that for $k \neq \pm /$ there are exactly two inequivalent and homogeneous strictly nearly parallel $\mathrm{G}_{2}$-structures which we denote by $\varphi^{ \pm}$.


## Example: Distinguishing strictly nearly parallel $\mathrm{G}_{2}$-structures

- Recall that for $k \neq \pm /$ there are exactly two inequivalent and homogeneous strictly nearly parallel $\mathrm{G}_{2}$-structures which we denote by $\varphi^{ \pm}$.
- On $X_{2,3}$, we have

$$
\begin{gathered}
A^{+}=2.827, B^{+}=2.197, C^{+}=1.848, D^{+}=2.668, \\
\sigma_{-1}\left(\varphi^{+}\right)=-1857.936, \sigma_{8}\left(\varphi^{+}\right)=-753.703, \sigma_{-7}\left(\varphi^{+}\right)=107.336,
\end{gathered}
$$

while

$$
\begin{gathered}
A^{-}=1.698, B^{-}=2.658, C^{-}=2.707, D^{-}=-1.708 \\
\sigma_{-1}\left(\varphi^{-}\right)=705.209, \sigma_{8}\left(\varphi^{-}\right)=-1726.540, \sigma_{-7}\left(\varphi^{-}\right)=-1812.541 .
\end{gathered}
$$

## Example: Distinguishing strictly nearly parallel $\mathrm{G}_{2}$-structures

- Recall that for $k \neq \pm /$ there are exactly two inequivalent and homogeneous strictly nearly parallel $\mathrm{G}_{2}$-structures which we denote by $\varphi^{ \pm}$.
- On $X_{2,3}$, we have

$$
\begin{gathered}
A^{+}=2.827, B^{+}=2.197, C^{+}=1.848, D^{+}=2.668 \\
\sigma_{-1}\left(\varphi^{+}\right)=-1857.936, \sigma_{8}\left(\varphi^{+}\right)=-753.703, \sigma_{-7}\left(\varphi^{+}\right)=107.336
\end{gathered}
$$

while

$$
\begin{gathered}
A^{-}=1.698, B^{-}=2.658, C^{-}=2.707, D^{-}=-1.708 \\
\sigma_{-1}\left(\varphi^{-}\right)=705.209, \sigma_{8}\left(\varphi^{-}\right)=-1726.540, \sigma_{-7}\left(\varphi^{-}\right)=-1812.541
\end{gathered}
$$

- Thus, irreducible, invariant $\mathrm{G}_{2}$-instantons exist in both cases, but live on topologically distinct bundles:

$$
\begin{array}{ll}
w_{2}\left(E_{-7}\right) \equiv 1(\bmod 2) \quad, \quad p_{1}\left(E_{-7}\right) \equiv 11(\bmod 19), \text { and } \\
w_{2}\left(E_{-1}\right) \equiv 1(\bmod 2) \quad, \quad p_{1}\left(E_{-1}\right) \equiv 1(\bmod 19) .
\end{array}
$$

## Example: Distinguishing strictly nearly parallel $\mathrm{G}_{2}$-structures

- Recall that for $k \neq \pm /$ there are exactly two inequivalent and homogeneous strictly nearly parallel $\mathrm{G}_{2}$-structures which we denote by $\varphi^{ \pm}$.
- On $X_{2,3}$, we have

$$
\begin{gathered}
A^{+}=2.827, B^{+}=2.197, C^{+}=1.848, D^{+}=2.668 \\
\sigma_{-1}\left(\varphi^{+}\right)=-1857.936, \sigma_{8}\left(\varphi^{+}\right)=-753.703, \sigma_{-7}\left(\varphi^{+}\right)=107.336
\end{gathered}
$$

while

$$
\begin{gathered}
A^{-}=1.698, B^{-}=2.658, C^{-}=2.707, D^{-}=-1.708 \\
\sigma_{-1}\left(\varphi^{-}\right)=705.209, \sigma_{8}\left(\varphi^{-}\right)=-1726.540, \sigma_{-7}\left(\varphi^{-}\right)=-1812.541
\end{gathered}
$$

- Thus, irreducible, invariant $\mathrm{G}_{2}$-instantons exist in both cases, but live on topologically distinct bundles:

$$
\begin{array}{ll}
w_{2}\left(E_{-7}\right) \equiv 1(\bmod 2) \quad, \quad p_{1}\left(E_{-7}\right) \equiv 11(\bmod 19), \text { and } \\
w_{2}\left(E_{-1}\right) \equiv 1(\bmod 2) \quad, \quad p_{1}\left(E_{-1}\right) \equiv 1(\bmod 19)
\end{array}
$$

- This may be a general phenomena for the strictly nearly parallel $\mathrm{G}_{2}$-structures on these $X_{k, I}$ (with $\left.k \neq \pm I\right)$. We did not try very hard to prove it!

Example: Non-minimal instantons for a nearly parallel $\varphi$ on $X_{1,-1}$

Level sets of the invariant Yang-Mills functional on $P_{-1}$.


Example: Non-minimal instantons for a nearly parallel $\varphi$ on $X_{1,-1}$

Level sets of the invariant Yang-Mills functional on $P_{-1}$.


- Global minimum is the bottom one and is a reducible $\mathrm{G}_{2}$-instanton.

Example: Non-minimal instantons for a nearly parallel $\varphi$ on $X_{1,-1}$
Level sets of the invariant Yang-Mills functional on $P_{-1}$.


- Global minimum is the bottom one and is a reducible $\mathrm{G}_{2}$-instanton.
- Two other local minima at the top are non-instanton Yang-Mills connections.

Example: Non-minimal instantons for a nearly parallel $\varphi$ on $X_{1,-1}$
Level sets of the invariant Yang-Mills functional on $P_{-1}$.


- Global minimum is the bottom one and is a reducible $\mathrm{G}_{2}$-instanton.
- Two other local minima at the top are non-instanton Yang-Mills connections.
- The two saddles are the irreducible $\mathrm{G}_{2}$-instantons.

Example: Non-minimal instantons for a nearly parallel $\varphi$ on $X_{1,-1}$
Level sets of the invariant Yang-Mills functional on $P_{-1}$.


- Global minimum is the bottom one and is a reducible $\mathrm{G}_{2}$-instanton.
- Two other local minima at the top are non-instanton Yang-Mills connections.
- The two saddles are the irreducible $\mathrm{G}_{2}$-instantons.


## $\mathrm{G}_{2}$-instantons on $X_{1,1}$

- When $k=I$, there are similar classification results for $\mathrm{G}_{2}$-instantons with $\mathrm{G}=\mathrm{U}(1), \mathrm{SO}(3)$.


## $\mathrm{G}_{2}$-instantons on $X_{1,1}$

- When $k=I$, there are similar classification results for $\mathrm{G}_{2}$-instantons with $\mathrm{G}=\mathrm{U}(1), \mathrm{SO}(3)$.
- Now there are two nearly parallel $\mathrm{G}_{2}$-structures in $\mathcal{C}$, only one of which is strictly nearly parallel $\varphi^{\text {snp }}$, the other one being tri-Sasakian $\varphi^{t s}$.


## $\mathrm{G}_{2}$-instantons on $X_{1,1}$

- When $k=I$, there are similar classification results for $\mathrm{G}_{2}$-instantons with $\mathrm{G}=\mathrm{U}(1), \mathrm{SO}(3)$.
- Now there are two nearly parallel $\mathrm{G}_{2}$-structures in $\mathcal{C}$, only one of which is strictly nearly parallel $\varphi^{\text {snp }}$, the other one being tri-Sasakian $\varphi^{t s}$.

Theorem (Distinguishing $\varphi^{\text {ts }}$ and $\varphi^{\text {snp }}$ )
There are no irreducible invariant $\mathrm{G}_{2}$-instantons with $\mathrm{G}=\mathrm{SO}(3)$ for $\varphi^{\text {ts }}$, but such $\mathrm{G}_{2}$-instantons do exist for $\varphi^{\text {snp }}$.

Thank you!

