Shopping for G2-instantons on Aloff-Wallach spaces

Gonçalo Oliveira on joint work with Gavin Ball

Departamento de Matemática, IST Lisboa

Pau, France, June 2023

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

G_2 -structures

 \blacktriangleright Using $\mathbb{R}^7\cong \operatorname{im}\mathbb{O}$ one can define the cross product

 $u \times v = \operatorname{im}(u \cdot v),$

• Using $\mathbb{R}^7 \cong \operatorname{im} \mathbb{O}$ one can define the cross product

 $u \times v = \operatorname{im}(u \cdot v),$

which satisfies

(i) $u \times v = -v \times u$, (ii) $u \times v \perp u$, (iii) $|u \times v|^2 = |u|^2 |v|^2 - \langle u, v \rangle^2$,

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and follows that $\varphi_0(u, v, w) = \langle u \times v, w \rangle$ is alternating.

• Using $\mathbb{R}^7 \cong \operatorname{im} \mathbb{O}$ one can define the cross product

 $u \times v = \operatorname{im}(u \cdot v),$

which satisfies

(i) $u \times v = -v \times u$, (ii) $u \times v \perp u$, (iii) $|u \times v|^2 = |u|^2 |v|^2 - \langle u, v \rangle^2$,

and follows that $\varphi_0(u, v, w) = \langle u \times v, w \rangle$ is alternating.

Define the positive 3-forms as

$$\Lambda^3_+:= \mathrm{GL}(7,\mathbb{R})\cdot \varphi_0 \subset \Lambda^3 \ \, \text{(is open)},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and $G_2 = \operatorname{Stab}(\varphi_0)$.

• Using $\mathbb{R}^7 \cong \operatorname{im} \mathbb{O}$ one can define the cross product

 $u \times v = \operatorname{im}(u \cdot v),$

which satisfies

(i) $u \times v = -v \times u$, (ii) $u \times v \perp u$, (iii) $|u \times v|^2 = |u|^2 |v|^2 - \langle u, v \rangle^2$,

and follows that $\varphi_0(u, v, w) = \langle u \times v, w \rangle$ is alternating.

Define the positive 3-forms as

$$\Lambda^3_+:= {\rm GL}(7,\mathbb{R})\cdot \varphi_0 \subset \Lambda^3 \ \, (\text{is open}),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and $G_2 = \text{Stab}(\varphi_0)$.

► $\varphi \in \Lambda^3_+ \rightsquigarrow$ a Riemannian metric g_{φ} (ex: $g_{\varphi_0} = \langle \cdot, \cdot \rangle$).

• Using $\mathbb{R}^7 \cong \operatorname{im} \mathbb{O}$ one can define the cross product

 $u \times v = \operatorname{im}(u \cdot v),$

which satisfies

(i) $u \times v = -v \times u$, (ii) $u \times v \perp u$, (iii) $|u \times v|^2 = |u|^2 |v|^2 - \langle u, v \rangle^2$,

and follows that $\varphi_0(u, v, w) = \langle u \times v, w \rangle$ is alternating.

Define the positive 3-forms as

$$\Lambda^3_+:= \mathrm{GL}(7,\mathbb{R}) \cdot \varphi_0 \subset \Lambda^3 \ \, \text{(is open)},$$

and $G_2 = \operatorname{Stab}(\varphi_0)$.

- ► $\varphi \in \Lambda^3_+ \rightsquigarrow$ a Riemannian metric g_{φ} (ex: $g_{\varphi_0} = \langle \cdot, \cdot \rangle$).
- ► M^7 a spin 7-manifold, a G₂-structure on M is a $\varphi \in \Omega^3(M)$ such that:

$$\forall p \in M, \quad \varphi_p \in \Lambda^3_+ T^*_p M.$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

From now on, let $\psi = *_{\varphi} \varphi \in \Omega^4(M)$.

 \blacktriangleright $\nabla \varphi$ determined by $d\varphi$ and $d\psi$ which are given by

$$d\varphi = au_0\psi + 3 au_1 \wedge \varphi + * au_3, \ d\psi = 4 au_1 \wedge \psi + au_2 \wedge \varphi,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

for some $\tau_i \in \Omega^i(M)$ called torsion forms.

• $\nabla \varphi$ determined by $d\varphi$ and $d\psi$ which are given by

$$d\varphi = \tau_0\psi + 3\tau_1 \wedge \varphi + *\tau_3, \ d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi,$$

for some $\tau_i \in \Omega^i(M)$ called torsion forms.

 $\blacktriangleright \varphi$ is *nearly parallel* if and only if

 $\tau_1 = \tau_2 = \tau_3 = 0$, and $\tau_0 \neq 0 \quad \Leftrightarrow \quad d\varphi = \tau_0 \psi, \ \tau_0 \in \mathbb{R} \setminus \{0\}.$

For these, g_{φ} is Einstein with $s_{\varphi} \sim \tau_0^2$.

 $\blacktriangleright \nabla \varphi$ determined by $d\varphi$ and $d\psi$ which are given by

$$d\varphi = \tau_0\psi + 3\tau_1 \wedge \varphi + *\tau_3, \ d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi,$$

for some $\tau_i \in \Omega^i(M)$ called torsion forms.

 $\blacktriangleright \varphi$ is *nearly parallel* if and only if

 $au_1 = au_2 = au_3 = 0, \text{ and } au_0 \neq 0 \quad \Leftrightarrow \quad d\varphi = au_0 \psi, \ au_0 \in \mathbb{R} \setminus \{0\}.$

For these, g_{φ} is Einstein with $s_{\varphi} \sim \tau_0^2$.

• Other important case (for today): when φ is coclosed, i.e. $d\psi = 0$, or

$$\tau_1 = \tau_2 = 0.$$

(日) (日) (日) (日) (日) (日) (日)

 $\blacktriangleright \nabla \varphi$ determined by $d\varphi$ and $d\psi$ which are given by

$$d\varphi = \tau_0\psi + 3\tau_1 \wedge \varphi + *\tau_3, \ d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi,$$

for some $\tau_i \in \Omega^i(M)$ called torsion forms.

 $\blacktriangleright \varphi$ is *nearly parallel* if and only if

 $au_1 = au_2 = au_3 = 0, \text{ and } au_0 \neq 0 \quad \Leftrightarrow \quad d\varphi = au_0 \psi, \ au_0 \in \mathbb{R} \setminus \{0\}.$

For these, g_{φ} is Einstein with $s_{\varphi} \sim \tau_0^2$.

• Other important case (for today): when φ is coclosed, i.e. $d\psi = 0$, or

$$\tau_1 = \tau_2 = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Relation to holonomy?

• $\nabla \varphi$ determined by $d\varphi$ and $d\psi$ which are given by

$$d\varphi = \tau_0\psi + 3\tau_1 \wedge \varphi + *\tau_3, \ d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi,$$

for some $\tau_i \in \Omega^i(M)$ called torsion forms.

 $\blacktriangleright \varphi$ is *nearly parallel* if and only if

 $au_1 = au_2 = au_3 = 0, \text{ and } au_0 \neq 0 \quad \Leftrightarrow \quad d\varphi = au_0 \psi, \ au_0 \in \mathbb{R} \setminus \{0\}.$

For these, g_{φ} is Einstein with $s_{\varphi} \sim \tau_0^2$.

• Other important case (for today): when φ is coclosed, i.e. $d\psi = 0$, or

$$\tau_1 = \tau_2 = 0.$$

Relation to holonomy?

If φ is nearly parallel, the metric cone ℝ⁺_r × M⁷ with g_C = dr² + r²g_φ, has holonomy ⊊ SO(8), so by Berger and Gallot must be

 $\{1\} \subset Sp(2) \subset SU(4) \subset Spin(7) \subset SO(8),$

and g_{φ} is tri-Sasakian, Sasaki-Einstein, strictly nearly parallel respectively.

• $\nabla \varphi$ determined by $d\varphi$ and $d\psi$ which are given by

$$d\varphi = \tau_0\psi + 3\tau_1 \wedge \varphi + *\tau_3, \ d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi,$$

for some $\tau_i \in \Omega^i(M)$ called torsion forms.

 $\blacktriangleright \varphi$ is *nearly parallel* if and only if

 $au_1 = au_2 = au_3 = 0, \text{ and } au_0 \neq 0 \quad \Leftrightarrow \quad d\varphi = au_0 \psi, \ au_0 \in \mathbb{R} \setminus \{0\}.$

For these, g_{φ} is Einstein with $s_{\varphi} \sim \tau_0^2$.

• Other important case (for today): when φ is coclosed, i.e. $d\psi = 0$, or

$$\tau_1 = \tau_2 = 0.$$

Relation to holonomy?

If φ is nearly parallel, the metric cone ℝ⁺_r × M⁷ with g_C = dr² + r²g_φ, has holonomy ⊊ SO(8), so by Berger and Gallot must be

 $\{1\} \subset Sp(2) \subset SU(4) \subset Spin(7) \subset SO(8),$

and g_{φ} is tri-Sasakian, Sasaki-Einstein, strictly nearly parallel respectively.

▶ \mathcal{A} connection on a G-bundle P over (M, φ) . Its Yang-Mills energy is

$$\mathcal{E}(\mathcal{A}) = \int_{M} |\mathcal{F}_{\mathcal{A}}|^2 \mathrm{vol}_{g_{arphi}},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

where $F_{\mathcal{A}} \in \Omega^2(M, \mathfrak{g}_P)$ is the curvature of \mathcal{A} .

▶ A connection on a G-bundle P over (M, φ) . Its Yang-Mills energy is

$$\mathcal{E}(\mathcal{A}) = \int_{M} |\mathcal{F}_{\mathcal{A}}|^2 \mathrm{vol}_{g_{arphi}},$$

where $F_{\mathcal{A}} \in \Omega^2(M, \mathfrak{g}_P)$ is the curvature of \mathcal{A} . Its critical points satisfy

 $d_A F_A = 0$, Biachi identity, valid for any connection, and $d_A * F_A = 0$, Yang-Mills equation.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ \mathcal{A} connection on a G-bundle P over (M, φ) . Its Yang-Mills energy is

$$\mathcal{E}(\mathcal{A}) = \int_{M} |\mathcal{F}_{\mathcal{A}}|^2 \mathrm{vol}_{g_{arphi}},$$

where $F_{\mathcal{A}} \in \Omega^2(M, \mathfrak{g}_P)$ is the curvature of \mathcal{A} . Its critical points satisfy

 $d_A F_A = 0$, Biachi identity, valid for any connection, and $d_A * F_A = 0$, Yang-Mills equation.

A connection A is a G₂-instanton if

$$*F_{\mathcal{A}} = -F_{\mathcal{A}} \wedge \varphi \iff F_{\mathcal{A}} \wedge \psi = \mathbf{0},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A connection on a G-bundle P over (M, φ) . Its Yang-Mills energy is

$$\mathcal{E}(\mathcal{A}) = \int_{M} |\mathcal{F}_{\mathcal{A}}|^2 \mathrm{vol}_{g_{arphi}},$$

where $F_{\mathcal{A}} \in \Omega^2(M, \mathfrak{g}_P)$ is the curvature of \mathcal{A} . Its critical points satisfy

 $d_A F_A = 0$, Biachi identity, valid for any connection, and $d_A * F_A = 0$, Yang-Mills equation.

A connection A is a G₂-instanton if

$$*F_{\mathcal{A}} = -F_{\mathcal{A}} \wedge \varphi \iff F_{\mathcal{A}} \wedge \psi = \mathbf{0},$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

which sits in an elliptic complex if φ is coclosed ($d\psi = 0$).

A connection on a G-bundle P over (M, φ) . Its Yang-Mills energy is

$$\mathcal{E}(\mathcal{A}) = \int_{M} |\mathcal{F}_{\mathcal{A}}|^2 \mathrm{vol}_{g_{arphi}},$$

where $F_{\mathcal{A}} \in \Omega^2(M, \mathfrak{g}_P)$ is the curvature of \mathcal{A} . Its critical points satisfy

 $d_A F_A = 0$, Biachi identity, valid for any connection, and $d_A * F_A = 0$, Yang-Mills equation.

A connection A is a G₂-instanton if

$$*F_{\mathcal{A}} = -F_{\mathcal{A}} \wedge \varphi \iff F_{\mathcal{A}} \wedge \psi = \mathbf{0},$$

which sits in an elliptic complex if φ is coclosed ($d\psi = 0$).

• If φ is nearly parallel ($d\varphi = \tau_0 \psi$), G₂-instantons are Yang-Mills

$$d_{\mathcal{A}} * F_{\mathcal{A}} = -d_{\mathcal{A}}F_{\mathcal{A}} \wedge \varphi - F_{\mathcal{A}} \wedge d\varphi = -\tau_0 F_{\mathcal{A}} \wedge \psi = 0.$$

(日) (日) (日) (日) (日) (日) (日)

A connection on a G-bundle P over (M, φ) . Its Yang-Mills energy is

$$\mathcal{E}(\mathcal{A}) = \int_{M} |\mathcal{F}_{\mathcal{A}}|^2 \mathrm{vol}_{g_{arphi}},$$

where $F_{\mathcal{A}} \in \Omega^2(M, \mathfrak{g}_P)$ is the curvature of \mathcal{A} . Its critical points satisfy

 $d_A F_A = 0$, Biachi identity, valid for any connection, and $d_A * F_A = 0$, Yang-Mills equation.

A connection A is a G₂-instanton if

$$*F_{\mathcal{A}} = -F_{\mathcal{A}} \wedge \varphi \iff F_{\mathcal{A}} \wedge \psi = \mathbf{0},$$

which sits in an elliptic complex if φ is coclosed ($d\psi = 0$).

• If φ is nearly parallel ($d\varphi = \tau_0 \psi$), G₂-instantons are Yang-Mills

$$d_{\mathcal{A}} * F_{\mathcal{A}} = -d_{\mathcal{A}}F_{\mathcal{A}} \wedge \varphi - F_{\mathcal{A}} \wedge d\varphi = -\tau_0 F_{\mathcal{A}} \wedge \psi = 0.$$

• However, for $\tau_0 \neq 0$, they need not be local minima of \mathcal{E}

$$\mathcal{E}(\mathcal{A}) = \int_{M} \langle F_{\mathcal{A}} \wedge F_{\mathcal{A}} \rangle \wedge \varphi + \| F_{\mathcal{A}} \wedge \psi \|_{L^{2}}^{2}.$$

A D F A 同 F A E F A E F A Q A

▶ Why G₂-Instantons? Develop counting type invariant for G₂-manifolds.

▶ Why G₂-Instantons? Develop counting type invariant for G₂-manifolds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Why nearly parallel? Interesting, and easier, testing ground.

- Why G₂-Instantons? Develop counting type invariant for G₂-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.

If φ is nearly parallel:

- ► G₂-instantons are Yang-Mills connections (as we saw).
- Any complex line bundle L admits a unique G₂-instanton (the connection whose curvature is the harmonic representative of c₁(L)).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \rightsquigarrow Just like for $G_2\text{-manifolds}.$

- Why G₂-Instantons? Develop counting type invariant for G₂-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.

If φ is nearly parallel:

- G₂-instantons are Yang-Mills connections (as we saw).
- Any complex line bundle L admits a unique G₂-instanton (the connection whose curvature is the harmonic representative of c₁(L)).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \rightsquigarrow Just like for $G_2\text{-manifolds}.$

But there are many differences as well! (~> ex: nontrivial moduli and non-minimality).

- Why G₂-Instantons? Develop counting type invariant for G₂-manifolds.
- Why nearly parallel? Interesting, and easier, testing ground.

If φ is nearly parallel:

- G₂-instantons are Yang-Mills connections (as we saw).
- Any complex line bundle L admits a unique G₂-instanton (the connection whose curvature is the harmonic representative of c₁(L)).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 \rightsquigarrow Just like for G₂-manifolds.

But there are many differences as well! (~> ex: nontrivial moduli and non-minimality).

Examples of nearly parallel φ ?

• Let $k, l \in \mathbb{Z}$ and $M_{k,l} = SU(3)/U(1)_{k,l}$, where

$$\left(egin{array}{ccc} e^{ik\theta} & 0 & 0 \\ 0 & e^{il\theta} & 0 \\ 0 & 0 & e^{im\theta} \end{array}
ight), \ \ \, ext{and} \ \, k+l+m=0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ Let $k, l \in \mathbb{Z}$ and $M_{k,l} = SU(3)/U(1)_{k,l}$, where

$$\left(\begin{array}{ccc} e^{ik\theta} & 0 & 0 \\ 0 & e^{il\theta} & 0 \\ 0 & 0 & e^{im\theta} \end{array}\right), \text{ and } k+l+m=0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• Consider the left-invariant 1-forms $\{\omega_1, \ldots, \omega_7, \xi\}$, with ξ the dual to the infinitesimal generator of U(1)_{*k*,*l*}.

• Let $k, l \in \mathbb{Z}$ and $M_{k,l} = SU(3)/U(1)_{k,l}$, where

$$\left(\begin{array}{ccc} e^{ik\theta} & 0 & 0 \\ 0 & e^{il\theta} & 0 \\ 0 & 0 & e^{im\theta} \end{array}\right), \text{ and } k+l+m=0.$$

Consider the left-invariant 1-forms {ω₁,...,ω₇, ξ}, with ξ the dual to the infinitesimal generator of U(1)_{k,l}. The most general coclosed, homogeneous G₂-structure is

$$arphi = ABC(\omega_{123} - \omega_{167} + \omega_{257} - \omega_{356}) - D\omega_4 \wedge (A^2\omega_{15} + B^2\omega_{26} + C^2\omega_{37}),$$

for $(A, B, C, D) \in \mathcal{C} = (\mathbb{R} \setminus 0)^4 / \mathbb{Z}_2^2.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Let $k, l \in \mathbb{Z}$ and $M_{k,l} = SU(3)/U(1)_{k,l}$, where

$$\left(egin{array}{ccc} e^{ik heta} & 0 & 0 \ 0 & e^{il heta} & 0 \ 0 & 0 & e^{im heta} \end{array}
ight), ext{ and } k+l+m=0.$$

Consider the left-invariant 1-forms {ω₁,...,ω₇, ξ}, with ξ the dual to the infinitesimal generator of U(1)_{k,l}. The most general coclosed, homogeneous G₂-structure is

$$\varphi = ABC(\omega_{123} - \omega_{167} + \omega_{257} - \omega_{356}) - D\omega_4 \wedge (A^2\omega_{15} + B^2\omega_{26} + C^2\omega_{37}),$$

for $(\textit{A},\textit{B},\textit{C},\textit{D}) \in \mathcal{C} = (\mathbb{R} \backslash 0)^4 / \mathbb{Z}_2^2.$ Its associated the metric is

$$g_{\varphi} = A^2 \left(\omega_1^2 + \omega_5^2 \right) + B^2 \left(\omega_2^2 + \omega_6^2 \right) + C^2 \left(\omega_3^2 + \omega_7^2 \right) + D^2 \omega_4^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Let $k, l \in \mathbb{Z}$ and $M_{k,l} = SU(3)/U(1)_{k,l}$, where

$$\left(egin{array}{ccc} e^{ik heta} & 0 & 0 \\ 0 & e^{il heta} & 0 \\ 0 & 0 & e^{im heta} \end{array}
ight), \ \ ext{and} \ k+l+m=0.$$

• Consider the left-invariant 1-forms $\{\omega_1, \ldots, \omega_7, \xi\}$, with ξ the dual to the infinitesimal generator of $U(1)_{k,l}$.

The most general coclosed, homogeneous G2-structure is

$$\varphi = ABC(\omega_{123} - \omega_{167} + \omega_{257} - \omega_{356}) - D\omega_4 \wedge (A^2\omega_{15} + B^2\omega_{26} + C^2\omega_{37}),$$

for $(A,B,C,D)\in \mathcal{C}=(\mathbb{R}\backslash 0)^4/\mathbb{Z}_2^2.$ Its associated the metric is

$$g_{\varphi} = A^2 \left(\omega_1^2 + \omega_5^2 \right) + B^2 \left(\omega_2^2 + \omega_6^2 \right) + C^2 \left(\omega_3^2 + \omega_7^2 \right) + D^2 \omega_4^2.$$

φ nearly parallel ⇔ quartic equation on (A, B, C, D) ∈ C, with exactly 2
solutions for k ≠ ±I. These, correspond to strictly nearly parallel φ!
(Cabrera, Monar and Swann)

• The duals of ξ and ω_4 generate the maximal torus $T^2 \subset SU(3)$

The duals of ξ and ω₄ generate the maximal torus T² ⊂ SU(3) and an invariant U(1)-connection can be written as

$$\mathcal{A} = n \, \xi + b \, \omega_4 \in \Omega^1(\mathrm{SU}(3), \mathfrak{u}(1)),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^2(X_{k,l}, \mathbb{Z})$.

The duals of ξ and ω₄ generate the maximal torus T² ⊂ SU(3) and an invariant U(1)-connection can be written as

$$\mathcal{A} = n \, \xi + b \, \omega_4 \in \Omega^1(\mathrm{SU}(3), \mathfrak{u}(1)),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^2(X_{k,l},\mathbb{Z})$.

• Write $\psi = -D\omega_4 \wedge \Upsilon + \frac{1}{2}\omega^2$, with (Υ, ω) inducing a Hermitian str. on $\frac{SU(3)}{T^2}$.

The duals of ξ and ω₄ generate the maximal torus T² ⊂ SU(3) and an invariant U(1)-connection can be written as

$$\mathcal{A} = n \, \xi + b \, \omega_4 \in \Omega^1(\mathrm{SU}(3), \mathfrak{u}(1)),$$

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^2(X_{k,l},\mathbb{Z})$.

- Write $\psi = -D\omega_4 \wedge \Upsilon + \frac{1}{2}\omega^2$, with (Υ, ω) inducing a Hermitian str. on $\frac{SU(3)}{T^2}$.
- Turns out that $d\xi \wedge \Upsilon = 0 = d\omega_4 \wedge \Upsilon$ always, while

$$d\xi \wedge \omega^2 \sim \Delta \omega^3$$
 and $d\omega_4 \wedge \omega^2 \sim \Gamma \omega^3$ where,

$$\Delta = A^2 B^2 I + A^2 C^2 k + B^2 C^2 m,$$

$$\Gamma = A^2 B^2 (m-k) + A^2 C^2 (I-m) + B^2 C^2 (k-I).$$

(日) (日) (日) (日) (日) (日) (日)

The duals of ξ and ω₄ generate the maximal torus T² ⊂ SU(3) and an invariant U(1)-connection can be written as

$$\mathcal{A} = n \, \xi + b \, \omega_4 \in \Omega^1(\mathrm{SU}(3), \mathfrak{u}(1)),$$

for $b \in \mathbb{R}$ and $n \in \mathbb{Z} \cong H^2(X_{k,l},\mathbb{Z})$.

- Write $\psi = -D\omega_4 \wedge \Upsilon + \frac{1}{2}\omega^2$, with (Υ, ω) inducing a Hermitian str. on $\frac{SU(3)}{T^2}$.
- Turns out that $d\xi \wedge \Upsilon = 0 = d\omega_4 \wedge \Upsilon$ always, while

$$d\xi \wedge \omega^2 \sim \Delta \; \omega^3$$
 and $d\omega_4 \wedge \omega^2 \sim \Gamma \; \omega^3$ where

$$\Delta = A^2 B^2 I + A^2 C^2 k + B^2 C^2 m,$$

$$\Gamma = A^2 B^2 (m - k) + A^2 C^2 (I - m) + B^2 C^2 (k - I).$$

Proposition

- If $\Delta \neq 0$, each line bundle admits a unique invariant G₂-instanton;
- If $\Delta = 0$ and $\Gamma \neq 0$, the only G₂-instantons live on the trivial line bundle;
- ► If $\Delta = 0 = \Gamma$, \exists a real 1-parameter family of G₂-instantons on any line bundle.

Proposition

- If $\Delta \neq 0$, each line bundle admits a unique invariant G₂-instanton;
- If $\Delta = 0$ and $\Gamma \neq 0$, the only G₂-instantons live on the trivial line bundle;
- ► If $\Delta = 0 = \Gamma$, \exists a real 1-parameter family of G₂-instantons on any line bundle.

 \Rightarrow Uniqueness of G₂-instantons on complex line bundles does not generalize to arbitrary coclosed φ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

 \Rightarrow Uniqueness of G₂-instantons on complex line bundles does not generalize to arbitrary coclosed φ .

However, for the generic $\varphi \in C$, each line bundle still admits a unique invariant G₂-instanton.

 \Rightarrow Uniqueness of G₂-instantons on complex line bundles does not generalize to arbitrary coclosed φ .

However, for the generic $\varphi \in C$, each line bundle still admits a unique invariant G₂-instanton.

Now we go to G = SO(3)!

▶ Homogeneous SO(3)-bundles are parametrized by $\lambda_n : U(1)_{k,l} \to SO(3)$

 $P_n = \mathrm{SU}(3) \times_{(\mathrm{U}(1)_{k,l},\lambda_n)} \mathrm{SO}(3).$

▶ Homogeneous SO(3)-bundles are parametrized by $\lambda_n : U(1)_{k,l} \to SO(3)$

$$P_n = \mathrm{SU}(3) \times_{(\mathrm{U}(1)_{k,l},\lambda_n)} \mathrm{SO}(3).$$

Fix a splitting $\mathfrak{su}(3) = \mathfrak{u}(1)_{k,l} \oplus \mathfrak{m}$ and the linear map

 $d\lambda_n \oplus 0 : \mathfrak{su}(3) \to \mathfrak{so}(3).$

▶ Homogeneous SO(3)-bundles are parametrized by $\lambda_n : U(1)_{k,l} \to SO(3)$

$$P_n = \mathrm{SU}(3) \times_{(\mathrm{U}(1)_{k,l},\lambda_n)} \mathrm{SO}(3).$$

Fix a splitting $\mathfrak{su}(3) = \mathfrak{u}(1)_{k,l} \oplus \mathfrak{m}$ and the linear map

$$d\lambda_n \oplus 0 : \mathfrak{su}(3) \to \mathfrak{so}(3).$$

The "canonical" invariant connection on P_n is its left-invariant extension

$$\mathcal{A}_{c}^{n} = d\lambda_{n} \oplus 0 \in \Omega^{1}(\mathrm{SU}(3), \mathfrak{so}(3)).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▶ Homogeneous SO(3)-bundles are parametrized by $\lambda_n : U(1)_{k,l} \to SO(3)$

 $P_n = \mathrm{SU}(3) \times_{(\mathrm{U}(1)_{k,l},\lambda_n)} \mathrm{SO}(3).$

Fix a splitting $\mathfrak{su}(3) = \mathfrak{u}(1)_{k,l} \oplus \mathfrak{m}$ and the linear map

$$d\lambda_n \oplus 0 : \mathfrak{su}(3) \to \mathfrak{so}(3).$$

The "canonical" invariant connection on P_n is its left-invariant extension

$$\mathcal{A}_{c}^{n} = d\lambda_{n} \oplus 0 \in \Omega^{1}(\mathrm{SU}(3), \mathfrak{so}(3)).$$

Any other invariant connection on P_n can be written as $\mathcal{A} = \mathcal{A}_c^n + \Lambda$, for Λ the left-invariant extension of a U(1)_{*k*,*l*}-equivariant map

$$\Lambda: (\mathfrak{m}, \mathrm{Ad}) \to (\mathfrak{so}(3), \mathrm{Ad} \circ \lambda_n).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ Homogeneous SO(3)-bundles are parametrized by $\lambda_n : U(1)_{k,l} \to SO(3)$

 $P_n = \mathrm{SU}(3) \times_{(\mathrm{U}(1)_{k,l},\lambda_n)} \mathrm{SO}(3).$

Fix a splitting $\mathfrak{su}(3) = \mathfrak{u}(1)_{k,l} \oplus \mathfrak{m}$ and the linear map

$$d\lambda_n \oplus 0 : \mathfrak{su}(3) \to \mathfrak{so}(3).$$

The "canonical" invariant connection on P_n is its left-invariant extension

$$\mathcal{A}_{c}^{n} = d\lambda_{n} \oplus 0 \in \Omega^{1}(\mathrm{SU}(3), \mathfrak{so}(3)).$$

Any other invariant connection on P_n can be written as $\mathcal{A} = \mathcal{A}_c^n + \Lambda$, for Λ the left-invariant extension of a U(1)_{*k*,*l*}-equivariant map

$$\Lambda: (\mathfrak{m}, \mathrm{Ad}) \to (\mathfrak{so}(3), \mathrm{Ad} \circ \lambda_n).$$

Decompose into irreducible U(1)_{k,l}-representations

$$\mathfrak{m} \cong \mathbb{R} \oplus \mathbb{C}_{k-l} \oplus \mathbb{C}_{l-m} \oplus \mathbb{C}_{m-k}, \quad \mathfrak{so}(3) \cong \mathbb{R} \oplus \mathbb{C}_n,$$

and Schur's lemma tells you the possible nonzero entries in Λ .

For $k \neq l$, we can construct irreducible connections *A* if and only if *n* is either k - l, l - m, or m - l. In each of these cases there is a continuous function

$$\sigma_n: \mathcal{C} \to \mathbb{R},$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

with for example
$$\sigma_{k-l}(\varphi) = 3\left(\frac{m}{2} - \frac{\sqrt{6}}{\sqrt{k^2 + l^2 + m^2}}\frac{AD}{BC}\right)\Delta + \frac{k-l}{2}\Gamma$$
.

For $k \neq l$, we can construct irreducible connections *A* if and only if *n* is either k - l, l - m, or m - l. In each of these cases there is a continuous function

$$\sigma_n: \mathcal{C} \to \mathbb{R},$$

(日) (日) (日) (日) (日) (日) (日)

with for example
$$\sigma_{k-l}(\varphi) = 3\left(\frac{m}{2} - \frac{\sqrt{6}}{\sqrt{k^2 + l^2 + m^2}}\frac{AD}{BC}\right)\Delta + \frac{k-l}{2}\Gamma$$
.

Theorem (Classification)

Irreducible, invariant, G2-instantons on Pn exist if and only if:

▶ n is either k − l, l − m, or m − k, and

•
$$\sigma_n(\varphi) > 0.$$

In this case, there are exactly 2 such instantons.

For $k \neq l$, we can construct irreducible connections *A* if and only if *n* is either k - l, l - m, or m - l. In each of these cases there is a continuous function

$$\sigma_n: \mathcal{C} \to \mathbb{R},$$

A D F A 同 F A E F A E F A Q A

with for example $\sigma_{k-l}(\varphi) = 3\left(\frac{m}{2} - \frac{\sqrt{6}}{\sqrt{k^2 + l^2 + m^2}}\frac{AD}{BC}\right)\Delta + \frac{k-l}{2}\Gamma.$

Theorem (Classification)

Irreducible, invariant, G2-instantons on Pn exist if and only if:

▶ n is either k - l, l - m, or m - k, and

•
$$\sigma_n(\varphi) > 0.$$

In this case, there are exactly 2 such instantons.

• What happens as we continuously deform $\varphi \in C$?

For $k \neq l$, we can construct irreducible connections *A* if and only if *n* is either k - l, l - m, or m - l. In each of these cases there is a continuous function

$$\sigma_n: \mathcal{C} \to \mathbb{R},$$

with for example $\sigma_{k-l}(\varphi) = 3\left(\frac{m}{2} - \frac{\sqrt{6}}{\sqrt{k^2 + l^2 + m^2}}\frac{AD}{BC}\right)\Delta + \frac{k-l}{2}\Gamma$.

Theorem (Classification)

Irreducible, invariant, G2-instantons on Pn exist if and only if:

▶ n is either k - l, l - m, or m - k, and

•
$$\sigma_n(\varphi) > 0.$$

In this case, there are exactly 2 such instantons.

• What happens as we continuously deform $\varphi \in C$?

Theorem (Deforming the G₂-structure)

Let n = k - l and $\{\varphi(s)\}_{s \in \mathbb{R}} \subset C$ a continuous family satisfying $\sigma_{k-l}(\varphi(s)) > 0$, for s < 0 and $\sigma_{k-l}(\varphi(s)) < 0$, for s > 0. Then, as $s \nearrow 0$, the two irreducible G_2 -instantons on P_n merge into the same reducible and obstructed one.

- $\varphi(A) \in C$, the G₂-structures with B = C = D = 1.
- Existence of irreducible G₂-instantons is controlled by

 $\sigma_6(\varphi(A)) = (A^2 - 1)(12\sqrt{7}A - 42) > 0$, i.e. for $A^2 < 1$ or $A > \sqrt{7}/2$.

- $\varphi(A) \in C$, the G₂-structures with B = C = D = 1.
- Existence of irreducible G2-instantons is controlled by

$$\sigma_6(\varphi(A)) = (A^2 - 1)(12\sqrt{7}A - 42) > 0$$
, i.e. for $A^2 < 1$ or $A > \sqrt{7}/2$.

Analogous to a family of stable bundles becoming polystable as the Kähler structure varies.

Analogous to a family of stable bundles becoming polystable as the Kähler structure varies.

Example: Distinguishing strictly nearly parallel G₂-structures

Recall that for k ≠ ±l there are exactly two inequivalent and homogeneous strictly nearly parallel G₂-structures which we denote by φ[±].

Example: Distinguishing strictly nearly parallel G2-structures

- Recall that for k ≠ ±l there are exactly two inequivalent and homogeneous strictly nearly parallel G₂-structures which we denote by φ[±].
- ▶ On $X_{2,3}$, we have

$$A^+=2.827,\ B^+=2.197,\ C^+=1.848,\ D^+=2.668,$$

$$\sigma_{-1}(\varphi^+)=-1857.936,\ \sigma_8(\varphi^+)=-753.703,\ \sigma_{-7}(\varphi^+)=107.336,$$
 while

$$A^- = 1.698, B^- = 2.658, C^- = 2.707, D^- = -1.708,$$

 $\sigma_{-1}(\varphi^-) = 705.209, \sigma_8(\varphi^-) = -1726.540, \sigma_{-7}(\varphi^-) = -1812.541.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example: Distinguishing strictly nearly parallel G₂-structures

- Recall that for k ≠ ±l there are exactly two inequivalent and homogeneous strictly nearly parallel G₂-structures which we denote by φ[±].
- On X_{2,3}, we have

$$A^+ = 2.827, \ B^+ = 2.197, \ C^+ = 1.848, \ D^+ = 2.668,$$

 $\sigma_{-1}(\varphi^+) = -1857.936, \ \sigma_8(\varphi^+) = -753.703, \ \sigma_{-7}(\varphi^+) = 107.336,$
while

$$A^- = 1.698, B^- = 2.658, C^- = 2.707, D^- = -1.708,$$

 $\sigma_{-1}(\varphi^-) = 705.209, \sigma_8(\varphi^-) = -1726.540, \sigma_{-7}(\varphi^-) = -1812.541.$

Thus, irreducible, invariant G₂-instantons exist in both cases, but live on topologically distinct bundles:

$$w_2(E_{-7}) \equiv 1 \pmod{2}$$
, $p_1(E_{-7}) \equiv 11 \pmod{19}$, and
 $w_2(E_{-1}) \equiv 1 \pmod{2}$, $p_1(E_{-1}) \equiv 1 \pmod{19}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example: Distinguishing strictly nearly parallel G2-structures

- Recall that for k ≠ ±l there are exactly two inequivalent and homogeneous strictly nearly parallel G₂-structures which we denote by φ[±].
- On X_{2,3}, we have

while

$$A^+ = 2.827, \ B^+ = 2.197, \ C^+ = 1.848, \ D^+ = 2.668,$$

 $\sigma_{-1}(\varphi^+) = -1857.936, \ \sigma_8(\varphi^+) = -753.703, \ \sigma_{-7}(\varphi^+) = 107.336,$

$$A^- = 1.698, B^- = 2.658, C^- = 2.707, D^- = -1.708,$$

 $\sigma_{-1}(\varphi^-) = 705.209, \sigma_8(\varphi^-) = -1726.540, \sigma_{-7}(\varphi^-) = -1812.541.$

Thus, irreducible, invariant G₂-instantons exist in both cases, but live on topologically distinct bundles:

$$w_2(E_{-7}) \equiv 1 \pmod{2}$$
, $p_1(E_{-7}) \equiv 11 \pmod{19}$, and $w_2(E_{-1}) \equiv 1 \pmod{2}$, $p_1(E_{-1}) \equiv 1 \pmod{19}$.

► This may be a general phenomena for the strictly nearly parallel G₂-structures on these $X_{k,l}$ (with $k \neq \pm l$). We did not try very hard to prove it!

Level sets of the invariant Yang-Mills functional on P_{-1} .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Level sets of the invariant Yang-Mills functional on P_{-1} .

Global minimum is the bottom one and is a reducible G₂-instanton.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Level sets of the invariant Yang-Mills functional on P_{-1} .

- Global minimum is the bottom one and is a reducible G₂-instanton.
- Two other local minima at the top are non-instanton Yang-Mills connections.

Level sets of the invariant Yang-Mills functional on P_{-1} .

- Global minimum is the bottom one and is a reducible G₂-instanton.
- Two other local minima at the top are non-instanton Yang-Mills connections.
- The two saddles are the irreducible G₂-instantons.

Level sets of the invariant Yang-Mills functional on P_{-1} .

- Global minimum is the bottom one and is a reducible G₂-instanton.
- Two other local minima at the top are non-instanton Yang-Mills connections.
- The two saddles are the irreducible G₂-instantons.

G_2 -instantons on $X_{1,1}$

When k = l, there are similar classification results for G₂-instantons with G = U(1), SO(3).

G_2 -instantons on $X_{1,1}$

- When k = l, there are similar classification results for G₂-instantons with G = U(1), SO(3).
- Now there are two nearly parallel G₂-structures in C, only one of which is strictly nearly parallel φ^{snp}, the other one being tri-Sasakian φ^{ts}.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

G_2 -instantons on $X_{1,1}$

- When k = l, there are similar classification results for G₂-instantons with G = U(1), SO(3).
- Now there are two nearly parallel G₂-structures in C, only one of which is strictly nearly parallel φ^{snp}, the other one being tri-Sasakian φ^{ts}.

Theorem (Distinguishing φ^{ts} and φ^{snp})

There are no irreducible invariant G₂-instantons with G = SO(3) for φ^{ts} , but such G₂-instantons do exist for φ^{snp} .

Thank you!

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで