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G2-structures

Definite 3-form
Let M be a Spin and orientable manifold. We define
Λ3
+M :=

⊔
x∈M

Λ3
+(M)x, with

Λ3
+(M)x := {φx ∈ Λ3T ∗

xM : ∃u ∈ Hom(TxM,R7), u∗ϕ = φx}.

ϕ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

G2-structures

φ ∈ Ω3
+(M) := Γ(Λ3

+M).

Associated metric

∀φ ∈ Ω3
+(M),∃!gφ such that 6gφ(X,Y )volφ := (X⌟φ) ∧ (Y ⌟φ) ∧ φ.
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Dual 4-form
ψ = ∗φ

Decomposition of differential forms

For 2-forms Ω2(M) = Ω2
7(M)⊕ Ω2

14(M).

Ω2
7(M) :={X⌟φ : X ∈ X(M)}

Ω2
14(M) :={ω ∈ Ω2(M) : ψ ∧ ω = 0}

For 3-forms Ω3(M) = Ω3
1(M)⊕ Ω3

7(M)⊕ Ω3
27(M),

Ω3
1(M) ={fφ : f ∈ C∞(M)}

Ω3
7(M) ={∗φ(α ∧ φ) : α ∈ Ω1(M)}

Ω3
27(M) ={α ∈ Ω3(M) : α ∧ φ = 0 and α ∧ ∗φ = 0} = iφ(S

2
0(M)).

iφ : S2(T ∗M) → Λ3(T ∗M) such that iφ(h) =
1

2
hl
iφljkdx

i ∧ dxj ∧ dxk
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Torsion forms

dφ = τ0ψ + 3τ1 ∧ φ+ ∗τ3,
dψ = 4τ1 ∧ ψ + τ2 ∧ φ.

where τ0 ∈ Ω0(M), τ1 ∈ Ω1(M), τ2 ∈ Ω2
14(M) and τ3 ∈ Ω3

27(M)

Torsion classes of G2-structures
Torsion free: ∇gφφ = 0 ⇔ dφ = 0, d ∗ φ = 0.

Closed or calibrated: dφ = 0;
Coclosed or cocalibrated: dψ = 0;
Nearly parallel: dφ = c ∗ φ for a constant c.
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Full torsion tensor
2-tensor Tlm satisfying ∇lφabc = Tlmg

mnψnabc.

T =
τ0

4
gφ − ∗(τ1 ∧ ψ)−

1

2
τ2 −

1

4
ȷ(τ3), (1)

Identities of the full torsion tensor
φ ∈ Ω3

+(M) coclosed:

divT =d(trT ), CurlT = (CurlT )t,

Ric =− CurlT − T 2 + tr(T )T, R = (trT )2 − |T |2.
(2)
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Laplacian coflow of G2-structures
Laplacian coflow

Fixing an orientation given by φ0 and t ∈ [a, b)

∂

∂t
ψt = ∆tψt = dd∗tψt + d∗tdψt.

If dψ0 = 0, then this property is preserved along the flow.

Volume functional

If M7 is a compact manifold

V (φ) =
1

7

∫
M

φ ∧ ∗φ

Laplacian coflow is the gradient flow of the volume functional. Then ψ
defines a torsion-free G2-structure if and only if it is a critical point of
the functional V restricted to the cohomology class [ψ] ∈ H4(M,R).
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Proposition-Grigorian

Under the flow (3), the evolution is given by

∂g

∂t
= 2CurlT + T ◦ T + 2T 2 = −2Ric + T ◦ T + 2(trT )T,

∂vol

∂t
=

1

2
(|T |2 + (trT )2)vol,

∂

∂t
T = ∆T − 2∇(divT ) +Rm⊛ T + (∇T )⊛ T + T ⊛ T ⊛ T,

Modified Laplacian coflow

∂ψ

∂t
= ∆ψψ + 2d((A− trT )φ), (3)
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Laplacian soliton for coclosed G2-structure

(ψ,X, λ) satisfying

∆ψψ = LXψ + λψ = d(X⌟ψ) + λψ, (4)

where dψ = 0, λ ∈ R and X is a vector field on M

It is natural to call a Laplacian soliton (ψ,X, λ) expanding if λ > 0;
steady if λ = 0 and shrinking if λ < 0.

Proposition

If M7 is compact, then there are no shrinking or steady soliton
solutions, other than the trivial steady case of a torsion-free
G2-structure.
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Theorem
Let φ be a coclosed G2-structure on a compact manifold M and
X ∈ X(M). Then,

LXψ =
4

7
(divX)ψ⊕(−1

2
CurlX+X⌟T )♭∧φ⊕∗iφ

(1
7
(divX)g− 1

2
(LXg)

)
(5)

where iφ : S2T ∗M → Ω3
1(M)⊕ Ω3

27(M) is the injective map.

Laplacian decomposition of coclosed G2-structures

∆ψψ =
2

7
((trT )2 + |T |2)ψ ⊕ (d trT ) ∧ φ

⊕ ∗φiφ
(
Ric− 1

2
T ◦ T − (trT )T +

1

14

(
(trT )2 + |T |2

)
g
)
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Proposition

Let φ be a coclosed G2-structure. If (ψ,X, λ) is a soliton of the
Laplacian coflow then

divT =− 1

2
(CurlX)♭ +X⌟T,

−Ric +
1

2
T ◦ T + (trT )T =

λ

4
g +

1

2
LXg.

(6)
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Sasakian manifolds

Contact form

A 1-form on R2n+1 that satisfies

η ∧ (dη)n ̸= 0.

Contact manifold
A 2n+ 1-dimensional manifold is a contact manifold if there exists a
1-form η, called a contact 1-form, on M such that

η ∧ (dη)n ̸= 0

everywhere on M .
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Almost contact structure (M2n+1, η, ξ,Φ)

It is a quadruple (M,η, ξ,Φ) where Φ is a tensor field of type (1, 1)
(i.e, an endomorphism of TM ), ξ is a vector field, and η is a 1-form
which satisfies

η(ξ) = 1, Φξ = 0, η ◦ Φ = 0 (7)
Φ ◦ Φ = −id + ξ ⊗ η. (8)

A Riemannian metric on M is said to be compatible with the almost
contact structure if for any fields X, Y on M we have

g(Φ(X),Φ(Y )) = g(X,Y )− η(X)η(Y ). (9)

A contact metric structure (M,η, ξ,Φ, g) satisfies

ω(X,Y ) = g(Φ(X), Y ) =
1

2
dη(X,Y ), X, Y ∈ X (M) (10)
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For a contact metric manifold (M,η, ξ,Φ, g) we take

volg =
η ∧ ωn

n!
=

1

2nn!
η ∧ (dη)n (11)

as the Riemannian volume form.

K-contact
A contact metric structure (M,η, ξ,Φ, g) such that ξ is a killing vector
field of g and we have

(∇Xη)(Y ) =
1

2
dη(X,Y ) (12)

r(X, ξ) = (2n)η(X),

g(R(X, ξ)Y, ξ) = g(X,Y )− η(X)η(Y ), (13)

where X,Y ∈ X(M), ∇ is the covariant differentiation with respect g,
r and R are the Ricci curvature tensor and Riemannian curvature
tensor respectively.
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A contact metric structure (ξ, η,Φ, g) is K-contact if and only if
∇ξ = −Φ.

Sasakian manifolds

The metric cone (C(M), dr2 + r2g, d(r2η)) is Kahler and it satisfies

(∇XΦ)Y = g(Y, ξ)X − g(X,Y )ξ, (14)
R(X, ξ)Y = g(Y, ξ)X − g(X,Y )ξ (15)

where Y,Z ∈ X (M).

A Sasakian manifold is necessarily a K-contact Riemanninan.
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Contact Calabi-Yau manifolds (cCY)

(M,η,Φ,Υ) such that
(M2n+1, η,Φ) is a Sasakian manifold.

g = η ⊗ η + gD = η ⊗ η + dη(·, J ·) = η ⊗ η + dη(·,Φ|D·)

Υ is a nowhere vanishing transversal (n, 0)-form on D = ker η:

Υ ∧Υ = cnω
n, dΥ = 0,

where cn = (−1)
n(n+1)

2 in and ω = dη.

Proposition

(M2n+1, η,Φ,Υ) be a cCY manifold. Then (M,η, ξ,Φ, g) is
null-Sasakian and the metric g induced by (η,Φ) is a η-Einstein with
λ = 2 and ν = 2n+ 2 and scalar curvature is equal to 2n− 1.
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Proposition

Let (M,η,Φ) be a compact simply-connected null-Sasakian
η-Einstein manifold. Then Hol(∇) ⊂ SU(n).

Proposition

A cCY manifold (M7, η,Φ,Υ) carries a cocalibrated G2-structure

φ := η ∧ ω +ReΥ,

with ω = dη and dφ = ω ∧ ω.

Its corresponding dual 4-form is given by

ψ = ∗φ =
1

2
ω ∧ ω − η ∧ ImΥ.
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We want to consider the Laplacian coflow starting at the natural
coclosed G2-structure on a cCY

φ0 = εη0 ∧ ω0 +ReΥ0 and ψ0 =
1

2
ω2
0 − εη0 ∧ ImΥ0. (16)

To this end, we consider the family of G2-structures given by

φt = fth
2
tη0 ∧ ω0 + h3t ReΥ0, (17)

for functions ft, ht depending only on time, with

f0 = ε and h0 = 1. (18)
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New solution

Theorem

Let (M7, η0,Φ0,Υ0) be a cCY manifold. The family of coclosed
G2-structures φt on M7 given by

φt = εp(t)−1η0 ∧ ω0 + p(t)3 ReΥ0; (19)

ψt =
1

2
p(t)4ω2

0 − εη0 ∧ ImΥ0; (20)

where p(t) = 10t+ 1 and t ∈ (−1/10,∞), solves the Laplacian coflow
with initial data determined by φ0 = η0 ∧ ω0 +ReΥ0.
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Associated metric and volume

In the setup, the Laplacian coflow on M7, with initial data determined
by φ0, is solved by the following family of coclosed G2-structures φt,
with associated metric gt, volume form volt and dual 4-form ψt:

gt = ε2p(t)−6η20 + p(t)2gD0 ;

volt = εp(t)3η0 ∧ volD0
,

where p(t) = (1 + 10ε2t)1/10 and t ∈ (− 1

10ε2
,∞). Hence, the solution

of the Laplacian coflow is immortal, with a finite time singularity

(backwards in time) at t = − 1

10ε2
.
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Proposition

Let {φt} be the Ansantz solution to the Laplacian coflow. Then
Riemannian curvature is given by

|Rmt|2gt = (1 + 10ε2t)−2/5|RmD0
0 |2g0 + c0ε

4(1 + 10ε2t)−2

for some constant c0 > 0.
if M is compact, then its volume is indeed strictly increasing in
time, tending to infinity:

Vol(M, gt) → ∞ as t→ ∞.

Then the associated metric gt is uniformly continuous (in t) on

any compact interval contained in (− 1

10ε2
,∞), but it is not

uniformly continuous on (− 1

10ε2
, T ) or (T,∞) for any T .
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Full torsion tensor

Tt = −3

2
ε3(1 + 10ε2t)−11/10η20 +

1

2
ε(1 + 10ε2t)−3/10gD0

.

Proposition

Let {φt} be the Ansatz solution. Then

|Tt|2gt =
15

4
ε2(1 + 10ε2t)−1,

|∇tTt|2gt = c0ε
4(1 + 10ε2t)−2,

divtTt = 0,

where c0 > 0 is a constant, ∇t is the Levi-Civita connection of gt and
divt is the divergence with respect to the metric gt.
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Chen’s dilation for Ricci-Like flow

Λ(x, t) := sup
M

(|Rm(y, t)|2gt + |T (y, t)|4gt + |∇T (y, t)|2gt)
1
2

.

Proposition

suppose moreover M7 is compact, and let K := sup
M

|RmD0
0 |g0 . Then

there is a constant c0 > 0, independent of ε, such that the quantity
Λ(t), along the Laplacian coflow solution is given by

Λ(t) =
(
K2(1 + 10ε2t)−2/5 + c0ε

4(1 + 10ε2t)−2
)1/2

.

Hence, the Laplacian coflow has a Type IIb infinite time singularity,
unless gD0 is flat, in which case it has a Type III infinite time
singularity.
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Almost abelian

Let G be a Lie group, it is called almost Abelian if its Lie algebra g
admits an Abelian ideal h of codimension 1.

we can consider that e7 ⊥ h and G2-structure can be written as

φ = ω ∧ e7 + ρ+ = e127 + e347 + e567 + e135 − e146 − e245 − e236, (21)

where ω = e12 + e34 + e56 and ρ+ = e135 − e146 − e245 − e236 are the
canonical SU(3)–structure of h ∼= R6

ψ := ∗φ =
1

2
ω2+ρ−∧e7 = e1234+e1256+e3456−e2467+e2357+e1457+e1367,

(22)
where ρ− = J∗ρ+ and J is the canonical complex structure on R6

defined by ω := ⟨J ·, ·⟩
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The transitive action of GL(g) on the space of G2-structures, defined
by h · φ := (h−1)∗φ ( for h ∈ GL(g)), yields an infinitesimal
representation of the alternating 3-form

Λ3(g)∗ = θ(gl(g))φ (23)

θ : gl(g) → End(Λ3g∗) is defined by

θ(B)φ :=
d

dt

∣∣∣
t=0

etB · φ = −φ(B·, ·, ·)− φ(·, B·, ·)− φ(·, ·, B·). (24)

Coclosed G2-structures on almost Abelian Lie algebras are
equivalent with the Lie bracket constrain A ∈ sp(6,R) [?], where

sp(R6) = {A ∈ gl(R6) : AJ + JAt = 0 ⇔ θ(A)ω = 0}.
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Let L ≃ gl(R6) be the family of 7-dimensional almost Abelian Lie
algebras. The subfamily Lcoclosed ≃ sp(R6) ⊂ L of coclosed
G2-structures is invariant under the bracket flow, which becomes
equivalent to the following ODE for a one-parameter family of
matrices A = A(t) ∈ sp(R6):

d

dt
A =−

(1
2
tr(SA)

2 +
1

4
(tr JA)2

)
A+

1

2
[A, [A,At]] +

1

2
[A,SA ◦6 SA]

(25)
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Consider the family of matrix

A =

[
B 0
0 −Bt

]
with B =

 0 x 0
y 0 0
0 0 0

 and x, y ∈ R

evolving under the bracket flow thus we obtain the nonlinear system
given by

ẋ = −2x(3x− y)(x+ y) and ẏ = 2y(x− 3y)(x+ y). (26)

The resulting ODE is separable and the trajectories are level curves
of

H(x(t), y(t)) =
(y(t)− x(t))2

y(t)3x(t)3
(27)
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