A Weitzenböck formula on Sasakian bundles

Funding: Centre Henri Lebesgue
Laboratoire de Mathématiques de Bretagne Atlantique LMBA

June 2023

Overview

1. Theoretical Background Contact instanton The moduli Space
2. Cohomological vanishing of obstruction
3. Positivity condition
4. The 3-Sasakian case

Table of Contents

1. Theoretical Background

Contact instanton The moduli Space

2. Cohomological vanishing of

 obstruction3. Positivity condition
4. The 3-Sasakian case

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler
- Partial connection: $D: E \rightarrow \Lambda^{1} S^{*} \otimes E$, satisfying $D\left(f_{s}\right)=f D(s)+q_{s}(d f) \otimes s$.

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler
- Partial connection: $D: E \rightarrow \Lambda^{1} S^{*} \otimes E$, satisfying $D\left(f_{s}\right)=f D(s)+q_{s}(d f) \otimes s$.
- Extend D to $D_{1}: \Lambda^{1} S^{*} \otimes E \rightarrow \Lambda^{2} S^{*} \otimes E$ and define the curvature by $K_{D}=D_{1} \circ D$

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler
- Partial connection: $D: E \rightarrow \Lambda^{1} S^{*} \otimes E$, satisfying $D\left(f_{s}\right)=f D(s)+q_{S}(d f) \otimes s$.
- Extend D to $D_{1}: \Lambda^{1} S^{*} \otimes E \rightarrow \Lambda^{2} S^{*} \otimes E$ and define the curvature by $K_{D}=D_{1} \circ D$
- Sasakian bundle is a pair $\mathbb{E}:=\left(E, D_{0}\right)$. Where D_{0} is a (Flat) partial connection along ξ.

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler
- Partial connection: $D: E \rightarrow \Lambda^{1} S^{*} \otimes E$, satisfying $D(f s)=f D(s)+q_{s}(d f) \otimes s$.
- Extend D to $D_{1}: \Lambda^{1} S^{*} \otimes E \rightarrow \Lambda^{2} S^{*} \otimes E$ and define the curvature by $K_{D}=D_{1} \circ D$
- Sasakian bundle is a pair $\mathbb{E}:=\left(E, D_{0}\right)$. Where D_{0} is a (Flat) partial connection along ξ.
- Holomorphic bundle: $(\mathbb{E}, \bar{\partial}), \mathbb{E}$ Sasakian bundle and $\bar{\partial}$ is partial connection along $\widetilde{H}^{0,1}=H^{0,1} \oplus N_{\xi}^{\mathbb{C}}$. Which restrict to D_{0}

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler
- Partial connection: $D: E \rightarrow \Lambda^{1} S^{*} \otimes E$, satisfying $D(f s)=f D(s)+q_{s}(d f) \otimes s$.
- Extend D to $D_{1}: \Lambda^{1} S^{*} \otimes E \rightarrow \Lambda^{2} S^{*} \otimes E$ and define the curvature by $K_{D}=D_{1} \circ D$
- Sasakian bundle is a pair $\mathbb{E}:=\left(E, D_{0}\right)$. Where D_{0} is a (Flat) partial connection along ξ.
- Holomorphic bundle: $(\mathbb{E}, \bar{\partial}), \mathbb{E}$ Sasakian bundle and $\bar{\partial}$ is partial connection along $\widetilde{H}^{0,1}=H^{0,1} \oplus N_{\xi}^{\mathbb{C}}$. Which restrict to D_{0}
- Integrable connection: $\mathcal{E}:=(\mathrm{E}, \bar{\partial})$ holomorphic, $A \in \mathcal{A}(E)$ induces $D_{\widetilde{H}^{0,1}}:=\left.d_{A}\right|_{\widetilde{H}^{0,1}}, A$ is integrable if $\left.d_{A}\right|_{\widetilde{H}^{0,1}}=\bar{\partial}$.

Holomorphic bundle

- Sasakian Manifolds \Longleftrightarrow the Riemannian cone $C(M)$ is Kähler
- Partial connection: $D: E \rightarrow \Lambda^{1} S^{*} \otimes E$, satisfying $D\left(f_{s}\right)=f D(s)+q_{S}(d f) \otimes s$.
- Extend D to $D_{1}: \Lambda^{1} S^{*} \otimes E \rightarrow \Lambda^{2} S^{*} \otimes E$ and define the curvature by $K_{D}=D_{1} \circ D$
- Sasakian bundle is a pair $\mathbb{E}:=\left(E, D_{0}\right)$. Where D_{0} is a (Flat) partial connection along ξ.
- Holomorphic bundle: $(\mathbb{E}, \bar{\partial}), \mathbb{E}$ Sasakian bundle and $\bar{\partial}$ is partial connection along $\widetilde{H}^{0,1}=H^{0,1} \oplus N_{\xi}^{\mathbb{C}}$. Which restrict to D_{0}
- Integrable connection: $\mathcal{E}:=(\mathrm{E}, \bar{\partial})$ holomorphic, $A \in \mathcal{A}(E)$ induces $D_{\widetilde{H}^{0,1}}:=\left.d_{A}\right|_{\tilde{\mathrm{H}}^{0,1}}, A$ is integrable if $\left.d_{A}\right|_{\widetilde{\mathrm{H}}^{0,1}}=\bar{\partial}$.
- $\operatorname{deg}(E)=\frac{\mathbf{i}}{2 \pi} \int_{X} \operatorname{Tr}\left(F_{E}\right) \wedge \omega^{n-1} \wedge \chi$, and $\mu(E)=\frac{\operatorname{deg}(E)}{\operatorname{rank}(E)}$, stability

Generalisation to $*\left(F_{A}\right)= \pm F_{A}$ for $n=4$

($n>4$) Higher dimensional Instantons
Choose $\sigma \in \Omega^{n-4}(M), A$ is σ-instanton if

$$
\begin{equation*}
*\left(\sigma \wedge F_{A}\right)=\lambda F_{A}, \quad \lambda \in \mathbb{R} \tag{1}
\end{equation*}
$$

($n>4$) Foliated Instantons [2]
($n-4$) codimensional foliation \mathcal{F} with characteristic form χ

$$
\begin{equation*}
*\left(\chi \wedge F_{A}\right)=\lambda F_{A}, \quad \lambda \in \mathbb{R} \tag{2}
\end{equation*}
$$

Three natural notions of instanton

Contact instantons $n=7$
In (1) InsEquation set $\sigma:=\eta \wedge d \eta$

$$
\Omega^{2}(M)=\Omega_{1}^{2} \oplus \Omega_{6}^{2} \oplus \Omega_{8}^{2} \oplus \Omega_{V}^{2} .
$$

$A \in \mathcal{A}(E)$ is SD contact instantons: if $F_{A} \in \Omega_{8}^{2}\left(\mathfrak{g}_{E}\right)$

- Transverse HYM: $\hat{F}_{A}:=\left(F_{A}, \omega\right)=0$ and $F_{A}^{0,2}=0$.

Three natural notions of instanton

Contact instantons $n=7$
In (1) InsEquation set $\sigma:=\eta \wedge d \eta$

$$
\Omega^{2}(M)=\Omega_{1}^{2} \oplus \Omega_{6}^{2} \oplus \Omega_{8}^{2} \oplus \Omega_{V}^{2} .
$$

$A \in \mathcal{A}(E)$ is SD contact instantons: if $F_{A} \in \Omega_{8}^{2}\left(\mathfrak{g}_{E}\right)$

- Transverse HYM: $\hat{F}_{A}:=\left(F_{A}, \omega\right)=0$ and $F_{A}^{0,2}=0$.
- G_{2}-instantons: For $M \mathrm{cCY}$ in (1) InsEquation $\sigma:=\varphi$

Three natural notions of instanton

Contact instantons $n=7$
In (1) InsEquation set $\sigma:=\eta \wedge d \eta$

$$
\Omega^{2}(M)=\Omega_{1}^{2} \oplus \Omega_{6}^{2} \oplus \Omega_{8}^{2} \oplus \Omega_{V}^{2} .
$$

$A \in \mathcal{A}(E)$ is SD contact instantons: if $F_{A} \in \Omega_{8}^{2}\left(\mathfrak{g}_{E}\right)$

- Transverse HYM: $\hat{F}_{A}:=\left(F_{A}, \omega\right)=0$ and $F_{A}^{0,2}=0$.
- G_{2}-instantons: For $M \mathrm{cCY}$ in (1) InsEquation $\sigma:=\varphi$

Three natural notions of instanton

Contact instantons $n=7$
$\ln (1) \stackrel{\operatorname{lns} E q u a t i o n}{ }$ set $\sigma:=\eta \wedge d \eta$

$$
\Omega^{2}(M)=\Omega_{1}^{2} \oplus \Omega_{6}^{2} \oplus \Omega_{8}^{2} \oplus \Omega_{V}^{2} .
$$

$A \in \mathcal{A}(E)$ is SD contact instantons: if $F_{A} \in \Omega_{8}^{2}\left(\mathfrak{g}_{E}\right)$

- Transverse HYM: $\hat{F}_{A}:=\left(F_{A}, \omega\right)=0$ and $F_{A}^{0,2}=0$.
- G_{2}-instantons: For $M \mathrm{cCY}$ in (1) InsEquation $\sigma:=\varphi$

Theorem: $\mathcal{E} \rightarrow M$ Sasakian holomorphic on a $c C Y$ manifold; A Chern connection is $\mathrm{tHYM} \Longleftrightarrow$ it is a G_{2}-instanton. \Longleftrightarrow it is a SDCI.

Theorem (Theorem [1])

Let E be a G-bundle over a closed, connected Sasakian 7-manifold (M, \mathcal{S}), \mathcal{M}^{*} the moduli space of irreducible $S D$ contact instantons and $[A]$ a $S D$ contact instanton, then:
(1) $H^{1}(C)=\frac{\operatorname{ker}\left(d_{7}\right)}{\operatorname{Im}\left(d_{A}\right)}$ the deformation space is finite dimensional.

Theorem (Theorem [1])

Let E be a G-bundle over a closed, connected Sasakian 7-manifold (M, \mathcal{S}), \mathcal{M}^{*} the moduli space of irreducible $S D$ contact instantons and $[A]$ a $S D$ contact instanton, then:
(1) $H^{1}(\mathrm{C})=\frac{\mathrm{ker}\left(d_{7}\right)}{\operatorname{Im}\left(d_{A}\right)}$ the deformation space is finite dimensional.
(2) $\operatorname{dim}_{[A]} T \mathcal{M}^{*}$ can be computed by a transversely elliptic basic complex, i.e., $\operatorname{dim}\left(T_{[A]} \mathcal{M}^{*}\right)=\operatorname{dim}\left(H_{B}^{2}\right)-\operatorname{index}_{T}(A)$.

Theorem (Theorem [1])

Let E be a G-bundle over a closed, connected Sasakian 7-manifold (M, \mathcal{S}), \mathcal{M}^{*} the moduli space of irreducible $S D$ contact instantons and $[A]$ a $S D$ contact instanton, then:
(1) $H^{1}(\mathrm{C})=\frac{\mathrm{ker}\left(d_{7}\right)}{\operatorname{Im}\left(d_{A}\right)}$ the deformation space is finite dimensional.
(2) $\operatorname{dim}_{[A]} T \mathcal{M}^{*}$ can be computed by a transversely elliptic basic complex, i.e., $\operatorname{dim}\left(T_{[A]} \mathcal{M}^{*}\right)=\operatorname{dim}\left(H_{B}^{2}\right)-\operatorname{index}_{T}(A)$.
(3) If $H_{B}^{2}=0, \mathcal{M}^{*}$ is smooth with $\operatorname{dim} \mathcal{M}^{*}=-\operatorname{index}_{T}(A)$

Deformation complex

We obtain an elliptic complex $\left(\mathrm{L}^{\bullet}, D\right)$

$$
0 \rightarrow \mathrm{~L}^{0} \xrightarrow{D_{0}} \mathrm{~L}^{1} \xrightarrow{D_{1}} \mathrm{~L}^{2} \xrightarrow{D_{2}} \mathrm{~L}^{3} \rightarrow 0
$$

which restricts to an transverse elliptic basic complex

$$
0 \rightarrow \Omega_{B}^{0}\left(\mathfrak{g}_{E}\right) \xrightarrow{D_{B}} \Omega_{B}^{1}\left(\mathfrak{g}_{E}\right) \xrightarrow{D_{B}}\left(\Omega_{6 \oplus 1}^{2}\right)_{B}\left(\mathfrak{g}_{E}\right) \xrightarrow{D_{B}} 0
$$

Remark

A Gysin sequence provides that $H^{2}=0$ implies $H^{1}=0$ for irreducible instantons, fortunately vanishing of the obstruction is obtained under the most reasonable condition $H_{B}^{2}=0$

Definition

We define the Laplacian and the transverse Laplacian of D respectively by $\Delta:=D D^{*}+D^{*} D$ and $\Delta_{T}:=D_{T} D_{T}^{*}+D_{T}^{*} D_{T}-D_{V}^{2}$

Lemma

There exists an isomorphism $\phi: \mathcal{H}_{T}^{k, 0} \xrightarrow{\sim} H_{B}^{k}$, where $\mathcal{H}_{T}^{k}=\operatorname{ker}\left(\Delta_{T}\right)$ and H_{B}^{k} is the cohomology of the basic complex.

Table of Contents

1. Theoretical Background Contact instanton The moduli Space

2. Cohomological vanishing of

 obstruction3. Positivity condition 4. The 3-Sasakian case

Local model [1]

Proposition

If $[A] \in \mathcal{M}^{*}$ is an irreducible SDCI such that the 'obstruction map' vanishes identically, then \mathcal{M}^{*} is a smooth manifold near $[A]$.

Proposition

At an irreducible SD contact instanton such that the second basic cohomology group $H_{B}^{2}=0$, the obstruction Ψ vanishes.

Recall: If M is Sasakian \mathcal{M}^{*} is Kähler

Table of Contents

1. Theoretical Background Contact instanton The moduli Space

2. Cohomological vanishing of obstruction

3. Positivity condition
4. The 3-Sasakian case

Fix the following hypothesis: Let $\left(M^{7}, \mathcal{S}\right)$ be a compact, connected, Sasakian manifold, $E \rightarrow M$ a Sasakian G-vector bundle, ∇ SDCI.

Proposition (Weitzenböck formula)

In coordinates, if $\varphi=\sum_{\gamma, \tau} \varphi_{\gamma \tau} d z^{\gamma} \wedge d z^{\tau} \in \Omega^{2,0}\left(\mathfrak{g}_{E}\right)$ then

$$
\begin{equation*}
\left(\Delta_{\partial \nabla} \varphi\right)_{\mu \nu}=-\sum_{\alpha \beta} g^{\alpha \bar{\beta}} \widetilde{\nabla}_{\bar{\beta}} \widetilde{\nabla}_{\alpha} \varphi_{\mu \nu}-\mathcal{F}_{\mu \nu}(\varphi)-\mathcal{R}_{\mu \nu}(\varphi) \tag{3}
\end{equation*}
$$

$\mathcal{F}, \mathcal{R} \in \operatorname{End}\left(\Omega^{2,0}\left(\mathfrak{g}_{E}\right)\right)$ depending on F_{∇} and on the transverse Ricci curvature respectively, gives by

$$
\mathcal{F}(\varphi)_{\mu \nu}:=\sum_{\alpha \beta} g^{\alpha \bar{\beta}}\left(\left[\varphi_{\alpha \nu}, \mathrm{F}_{\mu \bar{\beta}}\right]-\left[\varphi_{\alpha \mu}, \mathrm{F}_{\nu \bar{\beta}}\right]\right)
$$

and $\mathcal{R}(\varphi)_{\mu \nu}:=\sum_{\alpha \beta} g^{\alpha \bar{\beta}}\left(\mathrm{R}_{\bar{\beta} \mu} \varphi_{\alpha \nu}-\mathrm{R}_{\bar{\beta} \nu} \varphi_{\alpha \mu}\right)$.

Under the hypothesis to the Weitzenböck formula.

Theorem (Vanishing Theorem)

If the operator \mathcal{F} and \mathcal{R} are positive definite, then $\mathrm{H}_{B}^{2}=0$. Where H_{B}^{2} is the basic cohomology of the basic Complex associated to ∇

Proposition

If (M, \mathcal{S}) is a compact, connected Ricci positive Sasakian manifold and E a $S U(n)$ Sasakian Vector bundle such that the irreducible $S D C I \nabla \in \mathcal{A}(E)$ induces a basic Complex associated, then $\mathrm{H}_{B}^{2}=0$.

Table of Contents

1. Theoretical Background Contact instanton The moduli Space

3-Sasakian manifold

$(4 n+3)$ dimensional with 3 Sasakian structures $\xi_{1}, \xi_{2}, \xi_{3}$ (hyper-Kähler cone).

Geometry of the moduli space

Proposition

Let M be a compact, 3-Sasakian 7-manifold on smooth a smooth point A the 3-Sasakian structure induces the transverse quaternionic relations which endow \mathcal{M}_{a}^{*} whit a hyper-Kähler structure.

Mercí!

Bibliografía I

- Luis E Portilla and Henrique N SÁ Earp.

Instantons on Sasakian 7-manifolds.
The Quarterly Journal of Mathematics, 032023.
haad011.
目 Shuguang Wang.
A higher dimensional foliated donaldson theory, i. arXiv preprint arXiv:1212.6774, 2012.

