A Weitzenböck formula on Sasakian bundles

Funding: Centre Henri Lebesgue Laboratoire de Mathématiques de Bretagne Atlantique LMBA

June 2023

1. Theoretical Background Contact instanton The moduli Space 2. Cohomological vanishing of obstruction
 3. Positivity condition
 4. The 3-Sasakian case 1. Theoretical Background Contact instanton The moduli Space Cohomological vanishing of obstruction
 Positivity condition
 The 3-Sasakian case • Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler

- Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler
- Partial connection: $D: E \to \Lambda^1 S^* \otimes E$, satisfying $D(fs) = fD(s) + q_S(df) \otimes s$.

- Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler
- Partial connection: $D: E \to \Lambda^1 S^* \otimes E$, satisfying $D(fs) = fD(s) + q_S(df) \otimes s$.
- Extend D to $D_1: \Lambda^1 S^* \otimes E \to \Lambda^2 S^* \otimes E$ and define the curvature by $K_D = D_1 \circ D$

- Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler
- Partial connection: $D: E \to \Lambda^1 S^* \otimes E$, satisfying $D(fs) = fD(s) + q_S(df) \otimes s$.
- Extend D to $D_1: \Lambda^1 S^* \otimes E \to \Lambda^2 S^* \otimes E$ and define the curvature by $K_D = D_1 \circ D$
- Sasakian bundle is a pair E := (E, D₀). Where D₀ is a (Flat) partial connection along ξ.

- Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler
- Partial connection: $D: E \to \Lambda^1 S^* \otimes E$, satisfying $D(fs) = fD(s) + q_S(df) \otimes s$.
- Extend D to $D_1: \Lambda^1 S^* \otimes E \to \Lambda^2 S^* \otimes E$ and define the curvature by $K_D = D_1 \circ D$
- Sasakian bundle is a pair E := (E, D₀). Where D₀ is a (Flat) partial connection along ξ.
- Holomorphic bundle: (𝔼, ∂̄), 𝔅 Sasakian bundle and ∂̄ is partial connection along H̃^{0,1} = H^{0,1} ⊕ N^ℂ_ε. Which restrict to D₀

- Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler
- Partial connection: $D: E \to \Lambda^1 S^* \otimes E$, satisfying $D(fs) = fD(s) + q_S(df) \otimes s$.
- Extend D to $D_1: \Lambda^1 S^* \otimes E \to \Lambda^2 S^* \otimes E$ and define the curvature by $K_D = D_1 \circ D$
- Sasakian bundle is a pair E := (E, D₀). Where D₀ is a (Flat) partial connection along ξ.
- Holomorphic bundle: (𝔼, ∂̄), 𝔅 Sasakian bundle and ∂̄ is partial connection along H̃^{0,1} = H^{0,1} ⊕ N^ℂ_ε. Which restrict to D₀
- Integrable connection: $\mathcal{E} := (\mathbf{E}, \overline{\partial})$ holomorphic, $A \in \mathcal{A}(E)$ induces $D_{\widetilde{H}^{0,1}} := d_A|_{\widetilde{H}^{0,1}}$, A is integrable if $d_A|_{\widetilde{H}^{0,1}} = \overline{\partial}$.

- Sasakian Manifolds \iff the Riemannian cone C(M) is Kähler
- Partial connection: $D: E \to \Lambda^1 S^* \otimes E$, satisfying $D(fs) = fD(s) + q_S(df) \otimes s$.
- Extend D to $D_1: \Lambda^1 S^* \otimes E \to \Lambda^2 S^* \otimes E$ and define the curvature by $K_D = D_1 \circ D$
- Sasakian bundle is a pair E := (E, D₀). Where D₀ is a (Flat) partial connection along ξ.
- Holomorphic bundle: (𝔼, ∂̄), 𝔅 Sasakian bundle and ∂̄ is partial connection along H̃^{0,1} = H^{0,1} ⊕ N^ℂ_ε. Which restrict to D₀
- Integrable connection: $\mathcal{E} := (\mathbf{E}, \overline{\partial})$ holomorphic, $A \in \mathcal{A}(E)$ induces $D_{\widetilde{H}^{0,1}} := d_A|_{\widetilde{H}^{0,1}}$, A is integrable if $d_A|_{\widetilde{H}^{0,1}} = \overline{\partial}$.
- $deg(E) = \frac{i}{2\pi} \int_X Tr(F_E) \wedge \omega^{n-1} \wedge \chi$, and $\mu(E) = \frac{deg(E)}{rank(E)}$, stability

(n > 4) Higher dimensional Instantons

Choose $\sigma \in \Omega^{n-4}(M)$, A is σ -instanton if

$$*\left(\sigma\wedge \mathsf{F}_{\mathsf{A}}
ight)=\lambda\mathsf{F}_{\mathsf{A}},\quad\lambda\in\mathbb{R}$$
 (Contact (G2)

(n > 4) Foliated Instantons [2]

(n-4) codimensional foliation \mathcal{F} with characteristic form χ

$$*(\chi \wedge F_A) = \lambda F_A, \quad \lambda \in \mathbb{R}$$
⁽²⁾

(1)

In (1) • InsEquation set $\sigma := \eta \wedge d\eta$

$$\Omega^2(M) = \Omega_1^2 \oplus \Omega_6^2 \oplus \Omega_8^2 \oplus \Omega_V^2.$$

 $A \in \mathcal{A}(E)$ is SD contact instantons: if $F_A \in \Omega^2_8(\mathfrak{g}_E)$

• Transverse HYM: $\hat{F}_A := (F_A, \omega) = 0$ and $F_A^{0,2} = 0$.

In (1) InsEquation set $\sigma := \eta \wedge d\eta$

$$\Omega^2(M) = \Omega_1^2 \oplus \Omega_6^2 \oplus \Omega_8^2 \oplus \Omega_V^2.$$

 $A \in \mathcal{A}(E)$ is SD contact instantons: if $F_A \in \Omega^2_8(\mathfrak{g}_E)$

- Transverse HYM: $\hat{F}_A := (F_A, \omega) = 0$ and $F_A^{0,2} = 0$.
- G₂-instantons: For M cCY in (1) InsEquation $\sigma := \varphi$

In (1) InsEquation set $\sigma := \eta \wedge d\eta$

$$\Omega^2(M) = \Omega_1^2 \oplus \Omega_6^2 \oplus \Omega_8^2 \oplus \Omega_V^2.$$

 $A \in \mathcal{A}(E)$ is SD contact instantons: if $F_A \in \Omega^2_8(\mathfrak{g}_E)$

- Transverse HYM: $\hat{F}_A := (F_A, \omega) = 0$ and $F_A^{0,2} = 0$.
- G₂-instantons: For M cCY in (1) InsEquation $\sigma := \varphi$

In (1) InsEquation set $\sigma := \eta \wedge d\eta$

$$\Omega^2(M) = \Omega_1^2 \oplus \Omega_6^2 \oplus \Omega_8^2 \oplus \Omega_V^2.$$

 $A \in \mathcal{A}(E)$ is SD contact instantons: if $F_A \in \Omega^2_8(\mathfrak{g}_E)$

- Transverse HYM: $\hat{F}_A := (F_A, \omega) = 0$ and $F_A^{0,2} = 0$.
- G₂-instantons: For M cCY in (1) InsEquation $\sigma := \varphi$

Theorem: $\mathcal{E} \to M$ Sasakian holomorphic on a cCY manifold; A Chern connection is tHYM \iff it is a G₂-instanton. \iff it is a SDCI.

Theorem (Theorem [1])

Let E be a G-bundle over a closed, connected Sasakian 7-manifold (M, S), \mathcal{M}^* the moduli space of irreducible SD contact instantons and [A] a SD contact instanton, then:

1 $H^1(C) = \frac{\ker(d_7)}{\operatorname{Im}(d_A)}$ the deformation space is finite dimensional.

Theorem (Theorem [1])

Let E be a G-bundle over a closed, connected Sasakian 7-manifold (M, S), \mathcal{M}^* the moduli space of irreducible SD contact instantons and [A] a SD contact instanton, then:

- **1** $H^1(C) = \frac{\ker(d_7)}{\operatorname{Im}(d_A)}$ the deformation space is finite dimensional.
- **2** dim_[A] $T\mathcal{M}^*$ can be computed by a transversely elliptic basic complex, *i.e.*, dim $(T_{[A]}\mathcal{M}^*) = \dim(H^2_B) - \operatorname{index}_T(A)$.

Theorem (Theorem [1])

Let E be a G-bundle over a closed, connected Sasakian 7-manifold (M, S), \mathcal{M}^* the moduli space of irreducible SD contact instantons and [A] a SD contact instanton, then:

- **1** $H^1(C) = \frac{\ker(d_7)}{\operatorname{Im}(d_A)}$ the deformation space is finite dimensional.
- **2** dim_[A] $T\mathcal{M}^*$ can be computed by a transversely elliptic basic complex, *i.e.*, dim $(T_{[A]}\mathcal{M}^*) = \dim(H_B^2) - \operatorname{index}_T(A)$.
- **3** If $H_B^2 = 0$, \mathcal{M}^* is smooth with dim $\mathcal{M}^* = -\operatorname{index}_{\mathcal{T}}(A)$ Vanishing.

We obtain an elliptic complex (L^{\bullet}, D)

$$0 \to \mathrm{L}^0 \xrightarrow{D_0} \mathrm{L}^1 \xrightarrow{D_1} \mathrm{L}^2 \xrightarrow{D_2} \mathrm{L}^3 \to 0$$

which restricts to an transverse elliptic basic complex

$$0 \to \Omega^0_B(\mathfrak{g}_E) \xrightarrow{D_B} \Omega^1_B(\mathfrak{g}_E) \xrightarrow{D_B} (\Omega^2_{6\oplus 1})_B(\mathfrak{g}_E) \xrightarrow{D_B} 0$$

Remark

A Gysin sequence provides that $H^2 = 0$ implies $H^1 = 0$ for irreducible instantons, fortunately vanishing of the obstruction is obtained under the most reasonable condition $H_B^2 = 0$

Definition

We define the Laplacian and the transverse Laplacian of D respectively by $\Delta := DD^* + D^*D$ and $\Delta_T := D_T D_T^* + D_T^* D_T - D_V^2$

Lemma

There exists an isomorphism $\phi: \mathcal{H}_T^{k,0} \xrightarrow{\sim} \mathcal{H}_B^k$, where $\mathcal{H}_T^k = \ker(\Delta_T)$ and \mathcal{H}_B^k is the cohomology of the basic complex.

1. Theoretical Background Contact instanton The moduli Space

2. Cohomological vanishing of obstruction

3. Positivity condition

4. The 3-Sasakian case

Proposition

If $[A] \in \mathcal{M}^*$ is an irreducible SDCI such that the 'obstruction map' vanishes identically, then \mathcal{M}^* is a smooth manifold near [A].

Proposition

At an irreducible SD contact instanton such that the second basic cohomology group $H_B^2 = 0$, the obstruction Ψ vanishes.

Recall: If M is Sasakian \mathcal{M}^* is Kähler

1. Theoretical Background Contact instanton The moduli Space

 Cohomological vanishing of obstruction
 Positivity condition
 The 3-Sasakian case Fix the following hypothesis: Let (M^7, S) be a compact, connected, Sasakian manifold, $E \to M$ a Sasakian G-vector bundle, ∇ SDCI.

Proposition (Weitzenböck formula)

In coordinates, if
$$\varphi = \sum_{\gamma, \tau} \varphi_{\gamma \tau} dz^{\gamma} \wedge dz^{\tau} \in \Omega^{2,0}(\mathfrak{g}_{\mathsf{E}})$$
 then

$$\left(\Delta_{\partial_{\nabla}}\varphi\right)_{\mu\nu} = -\sum_{\alpha\beta} g^{\alpha\bar{\beta}} \widetilde{\nabla}_{\bar{\beta}} \widetilde{\nabla}_{\alpha}\varphi_{\mu\nu} - \mathcal{F}_{\mu\nu}(\varphi) - \mathcal{R}_{\mu\nu}(\varphi), \qquad (3)$$

 $\mathcal{F}, \mathcal{R} \in \operatorname{End}(\Omega^{2,0}(\mathfrak{g}_E))$ depending on F_{∇} and on the transverse Ricci curvature respectively, gives by

$$\mathcal{F}(\varphi)_{\mu\nu} := \sum_{\alpha\beta} g^{\alpha\bar{\beta}} \left([\varphi_{\alpha\nu}, \mathrm{F}_{\mu\bar{\beta}}] - [\varphi_{\alpha\mu}, \mathrm{F}_{\nu\bar{\beta}}] \right)$$

and $\mathcal{R}(\varphi)_{\mu\nu} := \sum_{\alpha\beta} g^{\alpha\bar{\beta}} \left(R_{\bar{\beta}\mu} \varphi_{\alpha\nu} - R_{\bar{\beta}\nu} \varphi_{\alpha\mu} \right).$

Under the hypothesis to the Weitzenböck formula.

Theorem (Vanishing Theorem)

If the operator \mathcal{F} and \mathcal{R} are positive definite, then $H_B^2 = 0$. Where H_B^2 is the basic cohomology of the basic \bigcirc complex associated to ∇

Proposition

If (M, S) is a compact, connected Ricci positive Sasakian manifold and E a SU(n) Sasakian Vector bundle such that the irreducible $SDCI \nabla \in \mathcal{A}(E)$ induces a basic \bigcirc complex associated, then $H_B^2 = 0$.

1. Theoretical Background Contact instanton The moduli Space

 Cohomological vanishing of obstruction
 Positivity condition
 The 3-Sasakian case (4n + 3) dimensional with 3 Sasakian structures ξ_1, ξ_2, ξ_3 (hyper-Kähler cone).

(4)

Proposition

Let M be a compact, 3–Sasakian 7-manifold on smooth a smooth point A the 3–Sasakian structure induces the transverse quaternionic relations which endow \mathcal{M}_a^* whit a hyper-Kähler structure.

Mercí!

Luis E Portilla and Henrique N SÁ Earp. Instantons on Sasakian 7-manifolds.

The Quarterly Journal of Mathematics, 03 2023. haad011.

Shuguang Wang.

A higher dimensional foliated donaldson theory, i. arXiv preprint arXiv:1212.6774, 2012.