University of Stuttgart
Institute of Geometry and Topology

Canonical connections and the Lichnerowicz Laplacian

Special geometries and gauge theories, Pau 23.06.2023

Image source: F. Pfaff, G. Kurz, U. D. Hanebeck,
Filtering on the Unit Sphere Using Spherical Harmonics

mathematiк

Contents

Nonintegrable geometries and canonical connections

Stability of Einstein metrics and the Lichnerowicz Laplacian

Deformation theory and integrability obstructions

Integrable geometries: a reminder

Setting: (M, g) Riemannian manifold, ∇^{g} Levi-Civita connection.

Integrable geometries: a reminder

Setting: (M, g) Riemannian manifold, ∇^{g} Levi-Civita connection.

Theorem (Berger 1955)

$\left(M^{n}, g\right)$ simply connected, non-symmetric such that $\operatorname{Hol}\left(\nabla^{g}\right) \curvearrowright T M$ irreducibly (holonomy irreducible). Then $\operatorname{Hol}\left(\nabla^{g}\right)$ is one of

$$
\mathrm{SO}(n), \quad \mathrm{U}(n), \quad \mathrm{SU}(n), \quad \mathrm{Sp}(m) \operatorname{Sp}(1), \quad \operatorname{Sp}(m), \quad \mathrm{G}_{2}, \quad \operatorname{Spin}(7), \quad[\operatorname{Spin}(9)]
$$

Integrable geometries: a reminder

Setting: (M, g) Riemannian manifold, ∇^{g} Levi-Civita connection.

Theorem (Berger 1955)

$\left(M^{n}, g\right)$ simply connected, non-symmetric such that $\operatorname{Hol}\left(\nabla^{g}\right) \curvearrowright T M$ irreducibly (holonomy irreducible). Then $\operatorname{Hol}\left(\nabla^{g}\right)$ is one of

$$
\mathrm{SO}(n), \quad \mathrm{U}(n), \quad \mathrm{SU}(n), \quad \mathrm{Sp}(m) \operatorname{Sp}(1), \quad \operatorname{Sp}(m), \quad \mathrm{G}_{2}, \quad \operatorname{Spin}(7), \quad[\operatorname{Spin}(9)]
$$

By de Rham's theorem, a simply connected (M, g) with reducible holonomy is a Riemannian product of manifolds with irreducible holonomy.

Integrable geometries: a reminder

$\left(M^{n}, g\right)$ oriented Riemannian manifold, $G \subset \mathrm{SO}(n)$ closed subgroup.

- $\operatorname{Fr}(M)$ bundle of orthonormal frames, $\mathrm{SO}(n)$-principal bundle.

Integrable geometries: a reminder

$\left(M^{n}, g\right)$ oriented Riemannian manifold, $G \subset \mathrm{SO}(n)$ closed subgroup.

- $\operatorname{Fr}(M)$ bundle of orthonormal frames, $\mathrm{SO}(n)$-principal bundle.
- A G-structure on M is a reduction $P \hookrightarrow \operatorname{Fr}(M)$ of the frame bundle, where P is a G-principal bundle.

Integrable geometries: a reminder

$\left(M^{n}, g\right)$ oriented Riemannian manifold, $G \subset \mathrm{SO}(n)$ closed subgroup.

- $\operatorname{Fr}(M)$ bundle of orthonormal frames, $\mathrm{SO}(n)$-principal bundle.
- A G-structure on M is a reduction $P \hookrightarrow \operatorname{Fr}(M)$ of the frame bundle, where P is a G-principal bundle.
- Principal connections on $P \rightsquigarrow G$-connections on $T M, \mathrm{Hol} \subset G$.

Integrable geometries: a reminder

$\left(M^{n}, g\right)$ oriented Riemannian manifold, $G \subset \mathrm{SO}(n)$ closed subgroup.

- $\operatorname{Fr}(M)$ bundle of orthonormal frames, $\mathrm{SO}(n)$-principal bundle.
- A G-structure on M is a reduction $P \hookrightarrow \operatorname{Fr}(M)$ of the frame bundle, where P is a G-principal bundle.
- Principal connections on $P \rightsquigarrow G$-connections on $T M, \mathrm{Hol} \subset G$.
- If $\operatorname{Hol}(M, g) \subset G$, then ∇^{g} comes from a principal connection on a G-structure.

Nonintegrable geometries

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

- $Z \in \Omega^{1}(\operatorname{Fr}(M), \mathfrak{s o}(n))$ connection form associated to ∇^{g}.

Nonintegrable geometries

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

- $Z \in \Omega^{1}(\operatorname{Fr}(M), \mathfrak{s o}(n))$ connection form associated to ∇^{g}.
- $\mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$.

Nonintegrable geometries

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

- $Z \in \Omega^{1}(\operatorname{Fr}(M), \mathfrak{s o}(n))$ connection form associated to ∇^{g}.
- $\mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$.
$\left.\rightsquigarrow Z\right|_{T P}=Z^{\prime} \oplus \Gamma$

Nonintegrable geometries

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

- $Z \in \Omega^{1}(\operatorname{Fr}(M), \mathfrak{s o}(n))$ connection form associated to ∇^{g}.
- $\mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$.
$\left.\rightsquigarrow Z\right|_{T P}=Z^{\prime} \oplus \Gamma$
- $Z^{\prime} \in \Omega^{1}(P, \mathfrak{g})$ is the natural metric connection on P.

Nonintegrable geometries

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

- $Z \in \Omega^{1}(\operatorname{Fr}(M), \mathfrak{s o}(n))$ connection form associated to ∇^{g}.
- $\mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$.
$\left.\rightsquigarrow Z\right|_{T P}=Z^{\prime} \oplus \Gamma$
- $Z^{\prime} \in \Omega^{1}(P, \mathfrak{g})$ is the natural metric connection on P.
- $\Gamma \in \Omega^{1}\left(P, \mathfrak{g}^{\perp}\right)$ is the intrinsic torsion of P.

Nonintegrable geometries

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

- $Z \in \Omega^{1}(\operatorname{Fr}(M), \mathfrak{s o}(n))$ connection form associated to ∇^{g}.
- $\mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$.
$\left.\rightsquigarrow Z\right|_{T P}=Z^{\prime} \oplus \Gamma$
- $Z^{\prime} \in \Omega^{1}(P, \mathfrak{g})$ is the natural metric connection on P.
- $\Gamma \in \Omega^{1}\left(P, \mathfrak{g}^{\perp}\right)$ is the intrinsic torsion of P.
- A nonintegrable geometry is (M, g, P) such that $\Gamma \neq 0$.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

Theorem (Friedrich-Ivanov 2002)

M admits a G-connection ∇^{c} with skew-symmetric torsion $T^{\mathrm{c}} \in \Omega^{3}(M)$ if and only if $\Gamma \in \operatorname{im} \Theta$, where

$$
\left.\Theta: \Lambda^{3} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \otimes \mathfrak{g}^{\perp}, \quad \Theta(T)=\sum_{i}\left(e_{i}\right\lrcorner T\right) \otimes e_{i}
$$

$\left(e_{i}\right)$ ONB of \mathfrak{g}^{\perp}. In this case

$$
2 \Gamma=-\Theta\left(T^{\mathrm{c}}\right)
$$

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

Theorem (Friedrich-Ivanov 2002)

M admits a G-connection ∇^{c} with skew-symmetric torsion $T^{\mathrm{c}} \in \Omega^{3}(M)$ if and only if $\Gamma \in \operatorname{im} \Theta$, where

$$
\left.\Theta: \Lambda^{3} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \otimes \mathfrak{g}^{\perp}, \quad \Theta(T)=\sum_{i}\left(e_{i}\right\lrcorner T\right) \otimes e_{i}
$$

$\left(e_{i}\right)$ ONB of \mathfrak{g}^{\perp}. In this case

$$
2 \Gamma=-\Theta\left(T^{\mathrm{c}}\right)
$$

- ∇^{c} is called a characteristic G-connection.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

Theorem (Friedrich-Ivanov 2002)

M admits a G-connection ∇^{c} with skew-symmetric torsion $T^{\mathrm{c}} \in \Omega^{3}(M)$ if and only if $\Gamma \in \operatorname{im} \Theta$, where

$$
\left.\Theta: \Lambda^{3} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \otimes \mathfrak{g}^{\perp}, \quad \Theta(T)=\sum_{i}\left(e_{i}\right\lrcorner T\right) \otimes e_{i}
$$

$\left(e_{i}\right)$ ONB of \mathfrak{g}^{\perp}. In this case

$$
2 \Gamma=-\Theta\left(T^{\mathrm{c}}\right)
$$

- ∇^{c} is called a characteristic G-connection.
- ∇^{c} is not automatically unique - but in many applications it is.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P.

Theorem (Friedrich-Ivanov 2002)

M admits a G-connection ∇^{c} with skew-symmetric torsion $T^{\mathrm{c}} \in \Omega^{3}(M)$ if and only if $\Gamma \in \operatorname{im} \Theta$, where

$$
\left.\Theta: \Lambda^{3} \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \otimes \mathfrak{g}^{\perp}, \quad \Theta(T)=\sum_{i}\left(e_{i}\right\lrcorner T\right) \otimes e_{i}
$$

$\left(e_{i}\right)$ ONB of \mathfrak{g}^{\perp}. In this case

$$
2 \Gamma=-\Theta\left(T^{\mathrm{c}}\right)
$$

- ∇^{c} is called a characteristic G-connection.
- ∇^{c} is not automatically unique - but in many applications it is.
- ∇^{c} has the same geodesics as ∇^{g}.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.
- Examples of nonintegrable geometries are manifolds with special weak holonomy (introduced by Gray in 1971), e.g.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.
- Examples of nonintegrable geometries are manifolds with special weak holonomy (introduced by Gray in 1971), e.g.
- nearly Kähler manifolds (weak holonomy $\mathrm{U}(n)$),

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.
- Examples of nonintegrable geometries are manifolds with special weak holonomy (introduced by Gray in 1971), e.g.
- nearly Kähler manifolds (weak holonomy $\mathrm{U}(n)$),
- nearly parallel G_{2}-manifolds.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.
- Examples of nonintegrable geometries are manifolds with special weak holonomy (introduced by Gray in 1971), e.g.
- nearly Kähler manifolds (weak holonomy $\mathrm{U}(n)$),
- nearly parallel G_{2}-manifolds.

Spinor approach to holonomy:

- Integrable: $\operatorname{Hol}\left(\nabla^{g}\right)=\mathrm{SU}(n), \operatorname{Sp}(n), \mathrm{G}_{2}, \operatorname{Spin}(7)$ related to ∇^{g}-parallel spinors.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.
- Examples of nonintegrable geometries are manifolds with special weak holonomy (introduced by Gray in 1971), e.g.
- nearly Kähler manifolds (weak holonomy $\mathrm{U}(n)$),
- nearly parallel G_{2}-manifolds.

Spinor approach to holonomy:

- Integrable: $\operatorname{Hol}\left(\nabla^{g}\right)=\operatorname{SU}(n), \operatorname{Sp}(n), \mathrm{G}_{2}, \operatorname{Spin}(7)$ related to ∇^{g}-parallel spinors.
- Nonintegrable: T^{c}-parallel spinors $=$ Killing spinors.

Nonintegrable geometries: Characteristic connections

$\left(M^{n}, g\right)$ oriented Riemannian manifold with a G-structure P admitting a characteristic connection ∇.

- An analogue of the de Rham Theorem for ∇^{c} does not hold - thus reducible holonomy becomes interesting (Cleyton-Moroianu-Semmelmann 2020).
- $\nabla_{X}^{\mathrm{c}} Y=\nabla_{X}^{g} Y+\frac{1}{2} T^{\mathrm{c}}(X, Y)$.
- Examples of nonintegrable geometries are manifolds with special weak holonomy (introduced by Gray in 1971), e.g.
- nearly Kähler manifolds (weak holonomy $\mathrm{U}(n)$),
- nearly parallel G_{2}-manifolds.

Spinor approach to holonomy:

- Integrable: $\operatorname{Hol}\left(\nabla^{g}\right)=\operatorname{SU}(n), \operatorname{Sp}(n), \mathrm{G}_{2}, \operatorname{Spin}(7)$ related to ∇^{g}-parallel spinors.
- Nonintegrable: T^{c}-parallel spinors = Killing spinors.
- E.g. Einstein-Sasaki manifolds, 3-Sasaki manifolds.

Nonintegrable geometries: parallel torsion

Theorem (Cleyton-Swann 2004)

(M, g, P) nonintegrable geometry with G-connection ∇ such that $\nabla T=0$ and $\operatorname{Hol}(\nabla) \curvearrowright T M$ irreducibly. Then one of the following holds:
(1) (M, g) is locally isometric to a non-symmetric isotropy irreducible homogeneous space,

Nonintegrable geometries: parallel torsion

Theorem (Cleyton-Swann 2004)

(M, g, P) nonintegrable geometry with G-connection ∇ such that $\nabla T=0$ and $\operatorname{Hol}(\nabla) \curvearrowright T M$ irreducibly. Then one of the following holds:
(1) (M, g) is locally isometric to a non-symmetric isotropy irreducible homogeneous space,
(2) (M, g) is locally isometric to $(G \times G) / \Delta G$ or $G^{\mathbb{C}} / G$,

Nonintegrable geometries: parallel torsion

Theorem (Cleyton-Swann 2004)

(M, g, P) nonintegrable geometry with G-connection ∇ such that $\nabla T=0$ and $\operatorname{Hol}(\nabla) \curvearrowright T M$ irreducibly. Then one of the following holds:
(1) (M, g) is locally isometric to a non-symmetric isotropy irreducible homogeneous space,
(2) (M, g) is locally isometric to $(G \times G) / \Delta G$ or $G^{\mathbb{C}} / G$,
(3) (M, g) is nearly Kähler,

Nonintegrable geometries: parallel torsion

Theorem (Cleyton-Swann 2004)

(M, g, P) nonintegrable geometry with G-connection ∇ such that $\nabla T=0$ and $\operatorname{Hol}(\nabla) \curvearrowright T M$ irreducibly. Then one of the following holds:
(1) (M, g) is locally isometric to a non-symmetric isotropy irreducible homogeneous space,
(2) (M, g) is locally isometric to $(G \times G) / \Delta G$ or $G^{\mathbb{C}} / G$,
(3) (M, g) is nearly Kähler,
(4) (M, g) is nearly parallel G_{2}.

Nonintegrable geometries: parallel torsion

Theorem (Cleyton-Swann 2004)

(M, g, P) nonintegrable geometry with G-connection ∇ such that $\nabla T=0$ and $\operatorname{Hol}(\nabla) \curvearrowright T M$ irreducibly. Then one of the following holds:
(1) (M, g) is locally isometric to a non-symmetric isotropy irreducible homogeneous space,
(2) (M, g) is locally isometric to $(G \times G) / \Delta G$ or $G^{\mathbb{C}} / G$,
(3) (M, g) is nearly Kähler,
(4) (M, g) is nearly parallel G_{2}.

In cases $1,3,4: \nabla=\nabla^{\mathrm{c}}$, hence T is skew-symmetric.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian manifold, $\nabla^{g} \omega$ skew-symmetric.
- ∇^{c} canonical Hermitian connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian manifold, $\nabla^{g} \omega$ skew-symmetric.
- ∇^{c} canonical Hermitian connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \omega=0$.
- $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X}^{g} J\right) Y$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian manifold, $\nabla^{g} \omega$ skew-symmetric.
- ∇^{c} canonical Hermitian connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \omega=0$.
- $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X}^{g} J\right) Y$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{U}(m)$, also weak holonomy $\mathrm{U}(m)$ in the sense of Gray.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

In dimension 6, strictly nearly Kähler:

- actually structure reduces to $\mathrm{SU}(3)$

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian manifold, $\nabla^{g} \omega$ skew-symmetric.
- ∇^{c} canonical Hermitian connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \omega=0$.
- $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X}^{g} J\right) Y$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{U}(m)$, also weak holonomy $\mathrm{U}(m)$ in the sense of Gray.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian manifold, $\nabla^{g} \omega$ skew-symmetric.
- ∇^{c} canonical Hermitian connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \omega=0$.
- $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X}^{g} J\right) Y$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{U}(m)$, also weak holonomy $\mathrm{U}(m)$ in the sense of Gray.
In dimension 6, strictly nearly Kähler:
- actually structure reduces to $\mathrm{SU}(3)$
- \exists Killing spinor, thus g is Einstein with $\operatorname{scal}_{g}>0$.

Nearly Kähler manifolds

Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ Hermitian manifold with $d \omega=0$.
- Automatically $\nabla^{g} \omega=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{U}(m)$.

Nearly Kähler manifolds

- $\left(M^{2 m}, g, J, \omega\right)$ almost Hermitian manifold, $\nabla^{g} \omega$ skew-symmetric.
- ∇^{c} canonical Hermitian connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \omega=0$.
- $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X}^{g} J\right) Y$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{U}(m)$, also weak holonomy $\mathrm{U}(m)$ in the sense of Gray.
In dimension 6, strictly nearly Kähler:
- actually structure reduces to $\mathrm{SU}(3)$
- \exists Killing spinor, thus g is Einstein with scal ${ }_{g}>0$.
- Cone $\bar{M}=M \times{ }_{r^{2}} \mathbb{R}_{+}$has a parallel spinor, $\operatorname{Hol}\left(\nabla^{\bar{g}}\right)=\mathrm{G}_{2}$.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$ such that $d \varphi=0, d^{*} \varphi=0$.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$
such that $d \varphi=0, d^{*} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$
such that $d \varphi=0, d^{*} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{G}_{2}$, thus Ricci-flat.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$
such that $d \varphi=0, d^{*} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{G}_{2}$, thus Ricci-flat.
- \exists parallel spinor.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$ such that $d \varphi=0, d^{*} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{G}_{2}$, thus Ricci-flat.
- \exists parallel spinor.

Nearly parallel G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure such that $d \varphi=\tau_{0} * \varphi$ for some $\tau_{0} \in \mathbb{R}$.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$ such that $d \varphi=0, d^{*} \varphi=0$.

Nearly parallel G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure such that $d \varphi=\tau_{0} * \varphi$ for some $\tau_{0} \in \mathbb{R}$.
- ∇^{c} canonical G_{2}-connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{G}_{2}$, thus Ricci-flat.
- \exists parallel spinor.

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$ such that $d \varphi=0, d^{*} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{G}_{2}$, thus Ricci-flat.
- \exists parallel spinor.

Nearly parallel G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure such that $d \varphi=\tau_{0} * \varphi$ for some $\tau_{0} \in \mathbb{R}$.
- ∇^{c} canonical G_{2}-connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \varphi=0$.
- $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.

Nearly parallel G_{2}-manifolds

Nearly parallel G_{2}-manifolds

(Torsion-free) G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure $\varphi \in \Omega_{+}^{3}(M)$ such that $d \varphi=0, d^{*} \varphi=0$.
- Automatically $\nabla^{g} \varphi=0$.
- $\operatorname{Hol}\left(\nabla^{g}\right) \subset \mathrm{G}_{2}$, thus Ricci-flat.
- \exists parallel spinor.
- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure such that $d \varphi=\tau_{0} * \varphi$ for some $\tau_{0} \in \mathbb{R}$.
- ∇^{c} canonical G_{2}-connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \varphi=0$.
- $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{G}_{2}$, also weak holonomy G_{2} in the sense of Gray.

Nearly parallel G_{2}-manifolds

Nearly parallel G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure such that $d \varphi=\tau_{0} * \varphi$ for some $\tau_{0} \in \mathbb{R}$.
- ∇^{c} canonical G_{2}-connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \varphi=0$.
- $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{G}_{2}$, also weak holonomy G_{2} in the sense of Gray.
- \exists Killing spinor, thus g is Einstein, $\operatorname{scal}_{g}=\frac{21}{8} \tau_{0}^{2}$.

Nearly parallel G_{2}-manifolds

Nearly parallel G_{2}-manifolds

- $\left(M^{7}, g, \varphi\right)$ Riemannian manifold with compatible G_{2}-structure such that $d \varphi=\tau_{0} * \varphi$ for some $\tau_{0} \in \mathbb{R}$.
- ∇^{c} canonical G_{2}-connection, $\nabla^{\mathrm{c}} g=0, \nabla^{\mathrm{c}} \varphi=0$.
- $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
- $\operatorname{Hol}\left(\nabla^{\mathrm{c}}\right) \subset \mathrm{G}_{2}$, also weak holonomy G_{2} in the sense of Gray.
- \exists Killing spinor, thus g is Einstein, $\operatorname{scal}_{g}=\frac{21}{8} \tau_{0}^{2}$.
If (M, g, φ) is proper nearly parallel G_{2} (not Sasakian):
- Cone $\bar{M}=M \times{ }_{r^{2}} \mathbb{R}_{+}$has a parallel spinor, $\operatorname{Hol}\left(\nabla^{\bar{g}}\right)=\operatorname{Spin}(7)$.

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
- H compact $\Longrightarrow M$ reductive.

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
- H compact $\Longrightarrow M$ reductive.
- \mathfrak{m} is called reductive complement, $\mathfrak{m} \cong T_{o} M$ isotropy representation of H.

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
- H compact $\Longrightarrow M$ reductive.
- \mathfrak{m} is called reductive complement, $\mathfrak{m} \cong T_{o} M$ isotropy representation of H.
- The principal bundle $G \rightarrow G / H$ is a H-structure on M.

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
- H compact $\Longrightarrow M$ reductive.
- \mathfrak{m} is called reductive complement, $\mathfrak{m} \cong T_{o} M$ isotropy representation of H.
- The principal bundle $G \rightarrow G / H$ is a H-structure on M.
\rightsquigarrow Canonical reductive connection $\bar{\nabla}$ (also Ambrose-Singer connection).

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
- H compact $\Longrightarrow M$ reductive.
- \mathfrak{m} is called reductive complement, $\mathfrak{m} \cong T_{o} M$ isotropy representation of H.
- The principal bundle $G \rightarrow G / H$ is a H-structure on M.
\rightsquigarrow Canonical reductive connection $\bar{\nabla}$ (also Ambrose-Singer connection).
- Every G-invariant tensor on M is $\bar{\nabla}$-parallel.

Reductive homogeneous spaces

G Lie group, H closed subgroup, $M=G / H$.

- M is called reductive if there is an $\operatorname{Ad}(H)$-invariant decomposition $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$.
- H compact $\Longrightarrow M$ reductive.
- \mathfrak{m} is called reductive complement, $\mathfrak{m} \cong T_{o} M$ isotropy representation of H.
- The principal bundle $G \rightarrow G / H$ is a H-structure on M.
\rightsquigarrow Canonical reductive connection $\bar{\nabla}$ (also Ambrose-Singer connection).
- Every G-invariant tensor on M is $\bar{\nabla}$-parallel.
- $\bar{T}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}, \quad X, Y \in \mathfrak{m} \cong T_{o} M$.

Naturally reductive homogeneous spaces

$M=G / H$ reductive homogeneous space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Assume M simply connected, G effective.

- g invariant Riemannian metric on $M \Longrightarrow H \subset \mathrm{SO}(\mathfrak{m})$.

Naturally reductive homogeneous spaces

$M=G / H$ reductive homogeneous space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Assume M simply connected, G effective.

- g invariant Riemannian metric on $M \Longrightarrow H \subset \mathrm{SO}(\mathfrak{m})$.
- (M, g) is called naturally reductive if

$$
g\left([Z, X]_{\mathfrak{m}}, Y\right)+g\left(X,[Z, Y]_{\mathfrak{m}}\right)=0, \quad X, Y, Z \in \mathfrak{m}
$$

Naturally reductive homogeneous spaces

$M=G / H$ reductive homogeneous space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Assume M simply connected, G effective.

- g invariant Riemannian metric on $M \Longrightarrow H \subset \mathrm{SO}(\mathfrak{m})$.
- (M, g) is called naturally reductive if

$$
g\left([Z, X]_{\mathfrak{m}}, Y\right)+g\left(X,[Z, Y]_{\mathfrak{m}}\right)=0, \quad X, Y, Z \in \mathfrak{m}
$$

- In this case $\bar{\nabla}$ is the unique characteristic connection of the H-structure $G \rightarrow G / H$.

Naturally reductive homogeneous spaces

$M=G / H$ reductive homogeneous space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Assume M simply connected, G effective.

- g invariant Riemannian metric on $M \Longrightarrow H \subset \mathrm{SO}(\mathfrak{m})$.
- (M, g) is called naturally reductive if

$$
g\left([Z, X]_{\mathfrak{m}}, Y\right)+g\left(X,[Z, Y]_{\mathfrak{m}}\right)=0, \quad X, Y, Z \in \mathfrak{m}
$$

- In this case $\bar{\nabla}$ is the unique characteristic connection of the H-structure $G \rightarrow G / H$.
- $\bar{T}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}$ is skew-symmetric.

Naturally reductive homogeneous spaces

$M=G / H$ reductive homogeneous space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Assume M simply connected, G effective.

- g invariant Riemannian metric on $M \Longrightarrow H \subset \mathrm{SO}(\mathfrak{m})$.
- (M, g) is called naturally reductive if

$$
g\left([Z, X]_{\mathfrak{m}}, Y\right)+g\left(X,[Z, Y]_{\mathfrak{m}}\right)=0, \quad X, Y, Z \in \mathfrak{m}
$$

- In this case $\bar{\nabla}$ is the unique characteristic connection of the H-structure $G \rightarrow G / H$.
- $\bar{T}_{o}(X, Y)=-[X, Y]_{\mathrm{m}}$ is skew-symmetric.
- Examples: All normal homogeneous spaces, in particular symmetric spaces and isotropy irreducible homogeneous spaces.

Naturally reductive homogeneous spaces

$M=G / H$ reductive homogeneous space, $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}$. Assume M simply connected, G effective.

- g invariant Riemannian metric on $M \Longrightarrow H \subset \mathrm{SO}(\mathfrak{m})$.
- (M, g) is called naturally reductive if

$$
g\left([Z, X]_{\mathfrak{m}}, Y\right)+g\left(X,[Z, Y]_{\mathfrak{m}}\right)=0, \quad X, Y, Z \in \mathfrak{m}
$$

- In this case $\bar{\nabla}$ is the unique characteristic connection of the H-structure $G \rightarrow G / H$.
- $\bar{T}_{o}(X, Y)=-[X, Y]_{\mathrm{m}}$ is skew-symmetric.
- Examples: All normal homogeneous spaces, in particular symmetric spaces and isotropy irreducible homogeneous spaces.
- $\bar{T}=0 \Longleftrightarrow \nabla^{\mathrm{c}}=\nabla^{g} \Longleftrightarrow M$ symmetric.

Homogeneous classifications

- Butruille 2005: Classification of homogeneous Gray manifolds (compact s.c. strict 6-dim. nK manifolds).

Homogeneous classifications

- Butruille 2005: Classification of homogeneous Gray manifolds (compact s.c. strict 6-dim. nK manifolds).
- These are the normal homogeneous spaces

$$
S^{6}=\frac{\mathrm{G}_{2}}{\mathrm{SU}(3)}, \quad S^{3} \times S^{3}=\frac{\mathrm{SU}(2)^{3}}{\Delta \mathrm{SU}(2)}, \quad \mathbb{C P}^{3}=\frac{\mathrm{Sp}(2)}{\mathrm{Sp}(1) \mathrm{U}(1)}, \quad F_{1,2}=\frac{\mathrm{SU}(3)}{T^{2}} .
$$

Homogeneous classifications

- Butruille 2005: Classification of homogeneous Gray manifolds (compact s.c. strict 6-dim. nK manifolds).
- These are the normal homogeneous spaces

$$
S^{6}=\frac{\mathrm{G}_{2}}{\mathrm{SU}(3)}, \quad S^{3} \times S^{3}=\frac{\mathrm{SU}(2)^{3}}{\Delta \mathrm{SU}(2)}, \quad \mathbb{C P}^{3}=\frac{\mathrm{Sp}(2)}{\mathrm{Sp}(1) \mathrm{U}(1)}, \quad F_{1,2}=\frac{\mathrm{SU}(3)}{T^{2}} .
$$

- Friedrich et al. 1997: Classification of homogeneous compact, s.c. nG_{2} manifolds.

Homogeneous classifications

- Butruille 2005: Classification of homogeneous Gray manifolds (compact s.c. strict 6-dim. nK manifolds).
- These are the normal homogeneous spaces

$$
S^{6}=\frac{\mathrm{G}_{2}}{\mathrm{SU}(3)}, \quad S^{3} \times S^{3}=\frac{\mathrm{SU}(2)^{3}}{\Delta \mathrm{SU}(2)}, \quad \mathbb{C P}^{3}=\frac{\mathrm{Sp}(2)}{\mathrm{Sp}(1) \mathrm{U}(1)}, \quad F_{1,2}=\frac{\mathrm{SU}(3)}{T^{2}} .
$$

- Friedrich et al. 1997: Classification of homogeneous compact, s.c. nG_{2} manifolds.
- These are the normal homogeneous spaces

$$
B=\frac{\mathrm{SO}(5)}{\mathrm{SO}(3)_{\mathrm{irr}}}, \quad S_{\mathrm{sq}}^{7}=\frac{\mathrm{Sp}(2) \times \mathrm{Sp}(1)}{\mathrm{Sp}(1) \times \mathrm{Sp}(1)},
$$

two non-isometric metrics on each of the Aloff-Wallach spaces

$$
N_{k, l}=\frac{\mathrm{SU}(3)}{S_{k, l}^{1}}, \quad S_{k, l}^{1}=\left\{\left(z^{k}, z^{l}\right) \mid z \in S^{1}\right\} \subset T^{2}, \quad k, l \text { coprime },
$$

plus Einstein-Sasaki spaces (also known).

The Einstein-Hilbert action

M compact, oriented. For a Riemannian metric g on M, let

$$
S_{g}:=\int_{M} \operatorname{scal}_{g} \operatorname{vol}_{g}
$$

be its total scalar curvature or Einstein-Hilbert action.

The Einstein-Hilbert action

M compact, oriented. For a Riemannian metric g on M, let

$$
S_{g}:=\int_{M} \operatorname{scal}_{g} \operatorname{vol}_{g}
$$

be its total scalar curvature or Einstein-Hilbert action.

- $\mathscr{M}_{1}:=\left\{g\right.$ Riem. metric on $\left.M, \int_{M} \operatorname{vol}_{g}=1\right\}$.

The Einstein-Hilbert action

M compact, oriented. For a Riemannian metric g on M, let

$$
S_{g}:=\int_{M} \operatorname{scal}_{g} \operatorname{vol}_{g}
$$

be its total scalar curvature or Einstein-Hilbert action.

- $\mathscr{M}_{1}:=\left\{g\right.$ Riem. metric on $\left.M, \int_{M} \operatorname{vol}_{g}=1\right\}$.
- For $g \in \mathscr{M}_{1}: g$ critical point of $\left.S\right|_{\mathscr{M}_{1}} \Longleftrightarrow \operatorname{Ric}_{g}=E g$ for some $E \in \mathbb{R}$.

The Einstein-Hilbert action

M compact, oriented. For a Riemannian metric g on M, let

$$
S_{g}:=\int_{M} \operatorname{scal}_{g} \operatorname{vol}_{g}
$$

be its total scalar curvature or Einstein-Hilbert action.

- $\mathscr{M}_{1}:=\left\{g\right.$ Riem. metric on $\left.M, \int_{M} \operatorname{vol}_{g}=1\right\}$.
- For $g \in \mathscr{M}_{1}: g$ critical point of $\left.S\right|_{\mathscr{M}_{1}} \Longleftrightarrow \operatorname{Ric}_{g}=E g$ for some $E \in \mathbb{R}$.
- What is the type of these critical points?

The Einstein-Hilbert action

M compact, oriented. For a Riemannian metric g on M, let

$$
S_{g}:=\int_{M} \operatorname{scal}_{g} \operatorname{vol}_{g}
$$

be its total scalar curvature or Einstein-Hilbert action.

- $\mathscr{M}_{1}:=\left\{g\right.$ Riem. metric on $\left.M, \int_{M} \operatorname{vol}_{g}=1\right\}$.
- For $g \in \mathscr{M}_{1}: g$ critical point of $\left.S\right|_{\mathscr{M}_{1}} \Longleftrightarrow \operatorname{Ric}_{g}=E g$ for some $E \in \mathbb{R}$.
- What is the type of these critical points?
- Consider the second variation $S_{g}^{\prime \prime}$. Also suppose $(M, g) \neq\left(S^{n}, g_{\text {round }}\right)$.

The second variation of S

Suppose $(M, g) \neq\left(S^{n}, g_{\text {round }}\right)$.

- $T_{g} \mathscr{M}_{1}=C_{g}^{\infty}(M) g \oplus L_{\mathfrak{X}(M)} g \oplus \mathscr{S}_{\mathrm{tt}}^{2}(M)$, where

$$
\begin{aligned}
C_{g}^{\infty}(M) & :=\left\{f \in C^{\infty}(M) \mid \int_{M} f \operatorname{vol}_{g}=0\right\}, \\
L_{\mathfrak{X}(M)} g & :=\left\{L_{X} g \mid X \in \mathfrak{X}(M)\right\}, \\
\mathscr{S}_{\mathrm{tt}}^{2}(M) & :=\left\{h \in \mathscr{S}^{2}(M) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\} .
\end{aligned}
$$

The second variation of S

Suppose $(M, g) \not \neq\left(S^{n}, g_{\text {round }}\right)$.

- $T_{g} \mathscr{M}_{1}=C_{g}^{\infty}(M) g \oplus L_{\mathfrak{X}(M)} g \oplus \mathscr{S}_{\mathrm{tt}}^{2}(M)$, where

$$
\begin{aligned}
C_{g}^{\infty}(M) & :=\left\{f \in C^{\infty}(M) \mid \int_{M} f \operatorname{vol}_{g}=0\right\}, \\
L_{\mathfrak{X}(M)} g & :=\left\{L_{X} g \mid X \in \mathfrak{X}(M)\right\}, \\
\mathscr{S}_{\mathrm{tt}}^{2}(M) & :=\left\{h \in \mathscr{S}^{2}(M) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\} .
\end{aligned}
$$

- The above splitting is orthogonal with respect to $S_{g}^{\prime \prime}$.

The second variation of S

Suppose $(M, g) \neq\left(S^{n}, g_{\text {round }}\right)$.

- $T_{g} \mathscr{M}_{1}=C_{g}^{\infty}(M) g \oplus L_{\mathfrak{X}(M)} g \oplus \mathscr{S}_{\mathrm{tt}}^{2}(M)$, where

$$
\begin{aligned}
C_{g}^{\infty}(M) & :=\left\{f \in C^{\infty}(M) \mid \int_{M} f \operatorname{vol}_{g}=0\right\}, \\
L_{\mathfrak{X}(M)} g & :=\left\{L_{X} g \mid X \in \mathfrak{X}(M)\right\}, \\
\mathscr{S}_{\mathrm{tt}}^{2}(M) & :=\left\{h \in \mathscr{S}^{2}(M) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\} .
\end{aligned}
$$

- The above splitting is orthogonal with respect to $S_{g}^{\prime \prime}$.
- $S_{g}^{\prime \prime}>0$ on $C_{g}^{\infty}(M) g$, i.e. g locally minimizes S along conformal change,

The second variation of S

Suppose $(M, g) \not \neq\left(S^{n}, g_{\text {round }}\right)$.

- $T_{g} \mathscr{M}_{1}=C_{g}^{\infty}(M) g \oplus L_{\mathfrak{X}(M)} g \oplus \mathscr{S}_{\mathrm{tt}}^{2}(M)$, where

$$
\begin{aligned}
C_{g}^{\infty}(M) & :=\left\{f \in C^{\infty}(M) \mid \int_{M} f \operatorname{vol}_{g}=0\right\}, \\
L_{\mathfrak{X}(M)} g & :=\left\{L_{X} g \mid X \in \mathfrak{X}(M)\right\}, \\
\mathscr{S}_{\mathrm{tt}}^{2}(M) & :=\left\{h \in \mathscr{S}^{2}(M) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\} .
\end{aligned}
$$

- The above splitting is orthogonal with respect to $S_{g}^{\prime \prime}$.
- $S_{g}^{\prime \prime}>0$ on $C_{g}^{\infty}(M) g$, i.e. g locally minimizes S along conformal change,
- $S_{g}^{\prime \prime}=0$ on $L_{\mathfrak{X}(M)} g$, i.e. S_{g} is unchanged under diffeomorphisms,

The second variation of S

Suppose $(M, g) \neq\left(S^{n}, g_{\text {round }}\right)$.

- $T_{g} \mathscr{M}_{1}=C_{g}^{\infty}(M) g \oplus L_{\mathfrak{X}(M)} g \oplus \mathscr{S}_{\mathrm{tt}}^{2}(M)$, where

$$
\begin{aligned}
C_{g}^{\infty}(M) & :=\left\{f \in C^{\infty}(M) \mid \int_{M} f \operatorname{vol}_{g}=0\right\}, \\
L_{\mathfrak{X}(M)} g & :=\left\{L_{X} g \mid X \in \mathfrak{X}(M)\right\}, \\
\mathscr{S}_{\mathrm{tt}}^{2}(M) & :=\left\{h \in \mathscr{S}^{2}(M) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\} .
\end{aligned}
$$

- The above splitting is orthogonal with respect to $S_{g}^{\prime \prime}$.
- $S_{g}^{\prime \prime}>0$ on $C_{g}^{\infty}(M) g$, i.e. g locally minimizes S along conformal change,
- $S_{g}^{\prime \prime}=0$ on $L_{\mathfrak{X}(M)} g$, i.e. S_{g} is unchanged under diffeomorphisms,
- $S_{g}^{\prime \prime}$ has finite coindex and nullity, i.e. is "'mostly negative"' in $\mathscr{S}_{\mathrm{tt}}^{2}(M)$.

The second variation of S

Suppose $(M, g) \neq\left(S^{n}, g_{\text {round }}\right)$.

- $T_{g} \mathscr{M}_{1}=C_{g}^{\infty}(M) g \oplus L_{\mathfrak{X}(M)} g \oplus \mathscr{S}_{\mathrm{tt}}^{2}(M)$, where

$$
\begin{aligned}
C_{g}^{\infty}(M) & :=\left\{f \in C^{\infty}(M) \mid \int_{M} f \operatorname{vol}_{g}=0\right\}, \\
L_{\mathfrak{X}(M)} g & :=\left\{L_{X} g \mid X \in \mathfrak{X}(M)\right\}, \\
\mathscr{S}_{\mathrm{tt}}^{2}(M) & :=\left\{h \in \mathscr{S}^{2}(M) \mid \operatorname{tr}_{g} h=0, \delta_{g} h=0\right\} .
\end{aligned}
$$

- The above splitting is orthogonal with respect to $S_{g}^{\prime \prime}$.
- $S_{g}^{\prime \prime}>0$ on $C_{g}^{\infty}(M) g$, i.e. g locally minimizes S along conformal change,
- $S_{g}^{\prime \prime}=0$ on $L_{\mathfrak{X}(M)} g$, i.e. S_{g} is unchanged under diffeomorphisms,
- $S_{g}^{\prime \prime}$ has finite coindex and nullity, i.e. is "'mostly negative"' in $\mathscr{S}_{\mathrm{tt}}^{2}(M)$.
- For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M), S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$, where Δ_{L} is the Lichnerowicz Laplacian.

The Lichnerowicz Laplacian

(M, g) compact, oriented Riemannian manifold. ∇ Levi-Civita connection. R Riemannian curvature.

- Recall the Weitzenböck formula for the Hodge-de Rham Laplacian on differential forms $\Omega^{p}(M)$:

$$
\Delta=d^{*} d+d d^{*}=\nabla^{*} \nabla+q(R)
$$

The Lichnerowicz Laplacian

(M, g) compact, oriented Riemannian manifold. ∇ Levi-Civita connection. R Riemannian curvature.

- Recall the Weitzenböck formula for the Hodge-de Rham Laplacian on differential forms $\Omega^{p}(M)$:

$$
\Delta=d^{*} d+d d^{*}=\nabla^{*} \nabla+q(R) .
$$

- (Standard) curvature endomorphism:

$$
q(R)=\sum_{i}\left(\omega_{i}\right)_{*} \circ \widehat{R}\left(\omega_{i}\right)_{*},
$$

where $\widehat{R}: \Lambda^{2} T M \rightarrow \Lambda^{2} T M$ is the curvature operator of the first kind, and (ω_{i}) is a local ONB of $\mathfrak{s o}(T M) \cong \Lambda^{2} T M$. Correspondence:

$$
(X \wedge Y)_{*} Z=g(X, Z) Y-g(Y, Z) X
$$

The Lichnerowicz Laplacian

Curvature endomorphism: $q(R)=\sum_{i}\left(\omega_{i}\right)_{*} \circ R\left(\omega_{i}\right)_{*}$. Examples:

- On $T M: q(R)=$ Ric.

The Lichnerowicz Laplacian

Curvature endomorphism: $q(R)=\sum_{i}\left(\omega_{i}\right)_{*} \circ R\left(\omega_{i}\right)_{*}$. Examples:

- On $T M: q(R)=$ Ric.
- On $\Lambda^{2} T M: q(R)=2 \widehat{R}$ - Der $_{\text {Ric }}$.

The Lichnerowicz Laplacian

Curvature endomorphism: $q(R)=\sum_{i}\left(\omega_{i}\right)_{*} \circ R\left(\omega_{i}\right)_{*}$. Examples:

- On TM: $q(R)=$ Ric.
- On $\Lambda^{2} T M: q(R)=2 \widehat{R}-\operatorname{Der}_{\text {Ric }}$.
- On $\operatorname{Sym}^{2} T M: q(R)=2 \stackrel{R}{R}-\operatorname{Der}_{\text {Ric }}$, where $\stackrel{\circ}{R}: \operatorname{Sym}^{2} T M \rightarrow \operatorname{Sym}^{2} T M$ is the curvature operator of the second kind. (up to sign convention)

The Lichnerowicz Laplacian

Curvature endomorphism: $q(R)=\sum_{i}\left(\omega_{i}\right)_{*} \circ R\left(\omega_{i}\right)_{*}$. Examples:

- On TM: $q(R)=$ Ric.
- On $\Lambda^{2} T M: q(R)=2 \widehat{R}-\operatorname{Der}_{\text {Ric }}$.
- On $\operatorname{Sym}^{2} T M: q(R)=2 \stackrel{R}{R}-\operatorname{Der}_{\text {Ric }}$, where $\stackrel{\circ}{R}: \operatorname{Sym}^{2} T M \rightarrow \operatorname{Sym}^{2} T M$ is the curvature operator of the second kind. (up to sign convention)
Both $\nabla^{*} \nabla$ and $q(R)$ are definable on any tensor bundle $\operatorname{Fr}(M) \times_{\mathrm{SO}(n)} V$, facilitating the definition

$$
\Delta_{\mathrm{L}}:=\nabla^{*} \nabla+q(R)
$$

of the Lichnerowicz Laplacian.

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called
- stable if $\Delta_{\mathrm{L}}>2 E\left(S_{g}^{\prime \prime}<0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called
- stable if $\Delta_{\mathrm{L}}>2 E\left(S_{g}^{\prime \prime}<0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- semistable if $\Delta_{\mathrm{L}} \geq 2 E\left(S_{g}^{\prime \prime} \leq 0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called
- stable if $\Delta_{\mathrm{L}}>2 E\left(S_{g}^{\prime \prime}<0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- semistable if $\Delta_{\mathrm{L}} \geq 2 E\left(S_{g}^{\prime \prime} \leq 0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- unstable if $\Delta_{\mathrm{L}} \nsupseteq 2 E$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)\left(\exists h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)>0\right)$.

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called
- stable if $\Delta_{\mathrm{L}}>2 E\left(S_{g}^{\prime \prime}<0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- semistable if $\Delta_{\mathrm{L}} \geq 2 E\left(S_{g}^{\prime \prime} \leq 0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- unstable if $\Delta_{\mathrm{L}} \nsupseteq 2 E$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)\left(\exists h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)>0\right)$.
- stable \Longrightarrow local maximum of S among unit volume metrics of constant scalar curvature.

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called
- stable if $\Delta_{\mathrm{L}}>2 E\left(S_{g}^{\prime \prime}<0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- semistable if $\Delta_{\mathrm{L}} \geq 2 E\left(S_{g}^{\prime \prime} \leq 0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- unstable if $\Delta_{\mathrm{L}} \nsupseteq 2 E$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)\left(\exists h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)>0\right)$.
- stable \Longrightarrow local maximum of S among unit volume metrics of constant scalar curvature.
- Null directions for $S_{g}^{\prime \prime}$ in $\mathscr{S}_{\mathrm{tt}}^{2}(M)$, i.e. elements of

$$
\varepsilon(g)=\left\{h \in \mathscr{S}_{\mathrm{tt}}^{2}(M) \mid \Delta_{\mathrm{L}} h=2 E h\right\}
$$

are called infinitesimal Einstein deformations. \rightsquigarrow Einstein moduli

Linear stability \& infinitesimal deformability

For $h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)=-\frac{1}{2}\left(\Delta_{\mathrm{L}} h-2 E h, h\right)_{L^{2}}$.

- An Einstein metric g is called
- stable if $\Delta_{\mathrm{L}}>2 E\left(S_{g}^{\prime \prime}<0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- semistable if $\Delta_{\mathrm{L}} \geq 2 E\left(S_{g}^{\prime \prime} \leq 0\right)$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$,
- unstable if $\Delta_{\mathrm{L}} \nsupseteq 2 E$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)\left(\exists h \in \mathscr{S}_{\mathrm{tt}}^{2}(M): S_{g}^{\prime \prime}(h, h)>0\right)$.
- stable \Longrightarrow local maximum of S among unit volume metrics of constant scalar curvature.
- Null directions for $S_{g}^{\prime \prime}$ in $\mathscr{S}_{\mathrm{tt}}^{2}(M)$, i.e. elements of

$$
\varepsilon(g)=\left\{h \in \mathscr{S}_{\mathrm{tt}}^{2}(M) \mid \Delta_{\mathrm{L}} h=2 E h\right\}
$$

are called infinitesimal Einstein deformations. \rightsquigarrow Einstein moduli

- Question: Does Δ_{L} have small eigenvalues on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$?

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Normalize such that scal ${ }_{g}=30$.

- Goal: Solve the differential system

$$
\begin{equation*}
\Delta_{\mathrm{L}} h=\lambda h, \quad \delta_{g} h=0 \tag{L}
\end{equation*}
$$

in $h \in \mathscr{S}_{0}^{2}(M)$ for some $\lambda \leq 2 E=10$.

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Normalize such that scal ${ }_{g}=30$.

- Goal: Solve the differential system

$$
\begin{equation*}
\Delta_{\mathrm{L}} h=\lambda h, \quad \delta_{g} h=0 \tag{L}
\end{equation*}
$$

in $h \in \mathscr{S}_{0}^{2}(M)$ for some $\lambda \leq 2 E=10$.

- Idea: Relate eigenspaces of Δ_{L} to eigenspaces of $\Delta^{\mathrm{c}}:=\nabla^{\mathrm{c} *} \nabla^{\mathrm{c}}+q\left(R^{\mathrm{c}}\right)$ (the standard Laplacian of ∇^{c}).

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Normalize such that scal ${ }_{g}=30$.

- Goal: Solve the differential system

$$
\begin{equation*}
\Delta_{\mathrm{L}} h=\lambda h, \quad \delta_{g} h=0 \tag{L}
\end{equation*}
$$

in $h \in \mathscr{S}_{0}^{2}(M)$ for some $\lambda \leq 2 E=10$.

- Idea: Relate eigenspaces of Δ_{L} to eigenspaces of $\Delta^{\mathrm{c}}:=\nabla^{\mathrm{c} *} \nabla^{\mathrm{c}}+q\left(R^{\mathrm{c}}\right)$ (the standard Laplacian of ∇^{c}).
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X} J\right) Y$.

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Normalize such that scal ${ }_{g}=30$.

- Goal: Solve the differential system

$$
\begin{equation*}
\Delta_{\mathrm{L}} h=\lambda h, \quad \delta_{g} h=0 \tag{L}
\end{equation*}
$$

in $h \in \mathscr{S}_{0}^{2}(M)$ for some $\lambda \leq 2 E=10$.

- Idea: Relate eigenspaces of Δ_{L} to eigenspaces of $\Delta^{\mathrm{c}}:=\nabla^{\mathrm{c} *} \nabla^{\mathrm{c}}+q\left(R^{\mathrm{c}}\right)$ (the standard Laplacian of ∇^{c}).
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X} J\right) Y$.
\rightsquigarrow comparison formulae for $\nabla^{g *} \nabla^{g}-\nabla^{\mathrm{c} *} \nabla^{\mathrm{c}}, q\left(R^{g}\right)-q\left(R^{\mathrm{c}}\right)$ on various bundles (Moroianu-Semmelmann 2010, 2011).

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Normalize such that scal ${ }_{g}=30$.

- Goal: Solve the differential system

$$
\begin{equation*}
\Delta_{\mathrm{L}} h=\lambda h, \quad \delta_{g} h=0 \tag{L}
\end{equation*}
$$

in $h \in \mathscr{S}_{0}^{2}(M)$ for some $\lambda \leq 2 E=10$.

- Idea: Relate eigenspaces of Δ_{L} to eigenspaces of $\Delta^{\mathrm{c}}:=\nabla^{\mathrm{c} *} \nabla^{\mathrm{c}}+q\left(R^{\mathrm{c}}\right)$ (the standard Laplacian of ∇^{c}).
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}(X, Y)=-J\left(\nabla_{X} J\right) Y$.
\rightsquigarrow comparison formulae for $\nabla^{g *} \nabla^{g}-\nabla^{\mathrm{c} *} \nabla^{\mathrm{c}}, q\left(R^{g}\right)-q\left(R^{\mathrm{c}}\right)$ on various bundles (Moroianu-Semmelmann 2010, 2011).
\rightsquigarrow System (L) is equivalent to

$$
\left\{\begin{array}{l}
\left(\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})\right) h^{+}=(\lambda-6) h^{+}+(\delta \sigma)_{1,1} \circ J \tag{L'}\\
\left(\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})\right) h^{-}=(\lambda-4) h^{-}-s \\
\delta h^{+}+\delta h^{-}=0
\end{array}\right.
$$

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold.

- $\mathrm{SU}(3)$-equivariant bundle maps: $\operatorname{Sym}_{0,+}^{2} \cong \Lambda_{0, \mathbb{R}}^{1,1}, \operatorname{Sym}_{-}^{2} \cong \Lambda_{0, \mathbb{R}}^{2,1}$.

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold.

- $\mathrm{SU}(3)$-equivariant bundle maps: $\operatorname{Sym}_{0,+}^{2} \cong \Lambda_{0, \mathbb{R}}^{1,1}, \mathrm{Sym}_{-}^{2} \cong \Lambda_{0, \mathbb{R}}^{2,1}$.
\rightsquigarrow If $\lambda<16$, system (L') is equivalent to

$$
\left\{\begin{array}{l}
\Delta \varphi=(\lambda-6) \varphi-\delta \sigma \tag{L"}\\
\Delta \sigma=(\lambda-4) \sigma-4 d \varphi \\
\delta \varphi=0 \\
\delta \sigma \in \Omega_{0, \mathbb{R}}^{(1,1)}
\end{array}\right.
$$

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold.

- $\mathrm{SU}(3)$-equivariant bundle maps: $\operatorname{Sym}_{0,+}^{2} \cong \Lambda_{0, \mathbb{R}}^{1,1}, \operatorname{Sym}_{-}^{2} \cong \Lambda_{0, \mathbb{R}}^{2,1}$.
\rightsquigarrow If $\lambda<16$, system (L') is equivalent to

$$
\left\{\begin{array}{l}
\Delta \varphi=(\lambda-6) \varphi-\delta \sigma \tag{L"}\\
\Delta \sigma=(\lambda-4) \sigma-4 d \varphi \\
\delta \varphi=0 \\
\delta \sigma \in \Omega_{0, \mathbb{R}}^{(1,1)}
\end{array}\right.
$$

- Note: $\Delta^{\mathrm{c}}=\Delta$ on $\Omega_{0, \mathbb{R}}^{1,1} \cap \operatorname{ker} \delta_{g}$.

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Denote $E(\mu):=\left.\operatorname{ker}(\Delta-\mu)\right|_{\Omega_{0, \mathbb{R}}^{1,1}} \cap \operatorname{ker} \delta_{g}$.

Theorem (S. 2022)

Suppose $\lambda=10-\varepsilon$ in system (L). The space of solutions of (L) is isomorphic to
(1) $E\left(\mu_{1}\right) \oplus E\left(\mu_{2}\right) \oplus E\left(\mu_{3}\right)$ with

$$
\mu_{1,2}=7-\varepsilon \pm \sqrt{25-4 \varepsilon}, \quad \mu_{3}=6-\varepsilon
$$

if $\varepsilon<\frac{25}{4}, \varepsilon \neq 6$,
(2) $\left.E(2) \oplus \operatorname{ker} \Delta\right|_{\Omega^{3}}$ if $\varepsilon=6$,
(3) $E\left(\frac{3}{4}\right)$ if $\varepsilon=\frac{25}{4}$,
(4) trivial if $\varepsilon>\frac{25}{4}$.

Δ_{L} on Gray manifolds

$\left(M^{6}, g, J\right)$ compact s.c. nK manifold. Denote $E(\mu):=\left.\operatorname{ker}(\Delta-\mu)\right|_{\Omega_{0, \mathbb{R}}^{1,1}} \cap \operatorname{ker} \delta_{g}$.

Theorem (S. 2022)

Suppose $\lambda=10-\varepsilon$ in system (L). The space of solutions of (L) is isomorphic to
(1) $E\left(\mu_{1}\right) \oplus E\left(\mu_{2}\right) \oplus E\left(\mu_{3}\right)$ with

$$
\mu_{1,2}=7-\varepsilon \pm \sqrt{25-4 \varepsilon}, \quad \mu_{3}=6-\varepsilon
$$

$$
\text { if } \varepsilon<\frac{25}{4}, \varepsilon \neq 6 \text {, }
$$

(2) $\left.E(2) \oplus \operatorname{ker} \Delta\right|_{\Omega^{3}}$ if $\varepsilon=6$,
(3) $E\left(\frac{3}{4}\right)$ if $\varepsilon=\frac{25}{4}$,
(4) trivial if $\varepsilon>\frac{25}{4}$.

In particular $\varepsilon(g) \cong E(2) \oplus E(6) \oplus E(12)$ (Moroianu-Semmelmann 2011).

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- The canonical Hermitian connection ∇^{c} coincides with the canonical reductive connection $\bar{\nabla}$.

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- The canonical Hermitian connection ∇^{c} coincides with the canonical reductive connection $\bar{\nabla}$.
- $\bar{\Delta}:=\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})$ standard Laplacian of $\bar{\nabla}$.

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- The canonical Hermitian connection ∇^{c} coincides with the canonical reductive connection $\bar{\nabla}$.
- $\bar{\Delta}:=\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})$ standard Laplacian of $\bar{\nabla}$.
- Peter-Weyl for homogeneous vector bundles $V M=G \times_{H} V$:

$$
\Gamma(V M)=\bar{\bigoplus}_{\gamma \in \hat{G}} V_{\gamma} \otimes \operatorname{Hom}_{H}\left(V_{\gamma}, V\right)
$$

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- The canonical Hermitian connection ∇^{c} coincides with the canonical reductive connection $\bar{\nabla}$.
- $\bar{\Delta}:=\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})$ standard Laplacian of $\bar{\nabla}$.
- Peter-Weyl for homogeneous vector bundles $V M=G \times_{H} V$:

$$
\Gamma(V M)=\bar{\bigoplus}_{\gamma \in \hat{G}} V_{\gamma} \otimes \operatorname{Hom}_{H}\left(V_{\gamma}, V\right)
$$

- $\bar{\Delta}=\mathrm{Cas}^{G}$ on $\Gamma(V M)$.

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- The canonical Hermitian connection ∇^{c} coincides with the canonical reductive connection $\bar{\nabla}$.
- $\bar{\Delta}:=\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})$ standard Laplacian of $\bar{\nabla}$.
- Peter-Weyl for homogeneous vector bundles $V M=G \times_{H} V$:

$$
\Gamma(V M)=\bar{\bigoplus}_{\gamma \in \hat{G}} V_{\gamma} \otimes \operatorname{Hom}_{H}\left(V_{\gamma}, V\right)
$$

- $\bar{\Delta}=\mathrm{Cas}^{G}$ on $\Gamma(V M)$.
- Freudenthal's formula: Cas $\left.^{G}\right|_{V_{\gamma}}=\left\langle\gamma, \gamma+2 \rho_{\mathfrak{g}}\right\rangle$ Id.

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- The canonical Hermitian connection ∇^{c} coincides with the canonical reductive connection $\bar{\nabla}$.
- $\bar{\Delta}:=\bar{\nabla}^{*} \bar{\nabla}+q(\bar{R})$ standard Laplacian of $\bar{\nabla}$.
- Peter-Weyl for homogeneous vector bundles $V M=G \times_{H} V$:

$$
\Gamma(V M)=\bar{\bigoplus}_{\gamma \in \hat{G}} V_{\gamma} \otimes \operatorname{Hom}_{H}\left(V_{\gamma}, V\right)
$$

- $\bar{\Delta}=\operatorname{Cas}^{G}$ on $\Gamma(V M)$.
- Freudenthal's formula: $\left.\mathrm{Cas}^{G}\right|_{V_{\gamma}}=\left\langle\gamma, \gamma+2 \rho_{\mathfrak{g}}\right\rangle$ Id.
\rightsquigarrow Spectrum of $\bar{\Delta}$, hence of $\Delta=\Delta^{\mathrm{c}}=\bar{\Delta}$ on $\Omega_{0, \mathbb{R}}^{1,1} \cap \operatorname{ker} \delta_{g}$. Multiplicities given by $\operatorname{dim} \operatorname{Hom}_{H}\left(V_{\gamma}, V\right)$.

Δ_{L} on homogeneous Gray manifolds

$\left(M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- $M=S^{6}$ is the round sphere, thus stable.

Δ_{L} on homogeneous Gray manifolds

$\left(M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- $M=S^{6}$ is the round sphere, thus stable.

Theorem (Moroianu-Semmelmann 2011)
$\varepsilon(g)=0$ except on $M=F_{1,2}$, where $\varepsilon(g) \cong \mathfrak{s u}(3)$.

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- $M=S^{6}$ is the round sphere, thus stable.

Theorem (Moroianu-Semmelmann 2011)

$$
\varepsilon(g)=0 \text { except on } M=F_{1,2}, \text { where } \varepsilon(g) \cong \mathfrak{s u}(3) .
$$

Theorem (S. 2022)

The coindex of $S_{g}^{\prime \prime}$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$ is

- 2 if $M=S^{3} \times S^{3}$ (comes from harmonic 3-forms),
- 1 if $M=\mathbb{C P}^{3}$ (comes from harmonic 2-forms),
- 2 if $M=F_{1,2}$ (comes from harmonic 2 -forms).

Δ_{L} on homogeneous Gray manifolds

($\left.M^{6}=G / H, g, J\right)$ compact homogeneous s.c. nK manifold.

- $M=S^{6}$ is the round sphere, thus stable.

Theorem (Moroianu-Semmelmann 2011)

$$
\varepsilon(g)=0 \text { except on } M=F_{1,2}, \text { where } \varepsilon(g) \cong \mathfrak{s u}(3)
$$

Theorem (S. 2022)

The coindex of $S_{g}^{\prime \prime}$ on $\mathscr{S}_{\mathrm{tt}}^{2}(M)$ is

- 2 if $M=S^{3} \times S^{3}$ (comes from harmonic 3-forms),
- 1 if $M=\mathbb{C P}^{3}$ (comes from harmonic 2-forms),
- 2 if $M=F_{1,2}$ (comes from harmonic 2 -forms).

This proves that the coindex bounds by SemmeImann-Wang-Wang 2020 are sharp.

Δ_{L} on nearly parallel G_{2} manifolds

$\left(M^{7}, g, \varphi\right)$ compact nearly parallel G_{2} manifold.

- Again, relate Δ_{L} to Δ^{c}.

Δ_{L} on nearly parallel G_{2} manifolds

$\left(M^{7}, g, \varphi\right)$ compact nearly parallel G_{2} manifold.

- Again, relate Δ_{L} to Δ^{c}.
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.

Δ_{L} on nearly parallel G_{2} manifolds

$\left(M^{7}, g, \varphi\right)$ compact nearly parallel G_{2} manifold.

- Again, relate Δ_{L} to Δ^{c}.
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
\rightsquigarrow Comparison formulae.

Δ_{L} on nearly parallel G_{2} manifolds

$\left(M^{7}, g, \varphi\right)$ compact nearly parallel G_{2} manifold.

- Again, relate Δ_{L} to Δ^{c}.
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
\rightsquigarrow Comparison formulae.
- G_{2}-equivariant bundle map $\operatorname{Sym}_{0}^{2} \cong \Lambda_{27}^{3}$.

Δ_{L} on nearly parallel G_{2} manifolds

$\left(M^{7}, g, \varphi\right)$ compact nearly parallel G_{2} manifold.

- Again, relate Δ_{L} to Δ^{c}.
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
\rightsquigarrow Comparison formulae.
- G_{2}-equivariant bundle map $\operatorname{Sym}_{0}^{2} \cong \Lambda_{27}^{3}$.

Theorem (Alexandrov-Semmelmann 2011)

$\varepsilon(g) \cong\left\{\gamma \in \Omega_{27}^{3} \mid * d \gamma=-\tau_{0} \gamma\right\} \oplus\left\{\gamma \in \Omega_{27}^{3} \left\lvert\, * d \gamma=\frac{\tau_{0}}{2} \gamma\right.\right\} \oplus\left\{\gamma \in \Omega_{27}^{3} \left\lvert\, d d^{*} \gamma=\frac{\tau_{0}^{2}}{2} \gamma\right.\right\}$.
Normal homogeneous examples: $\varepsilon(g)=0$ for B, S_{sq}^{7} and $\varepsilon(g) \cong \mathfrak{s u}(3)$ for $N_{1,1}$.

Δ_{L} on nearly parallel G_{2} manifolds

$\left(M^{7}, g, \varphi\right)$ compact nearly parallel G_{2} manifold.

- Again, relate Δ_{L} to Δ^{c}.
- $\nabla^{\mathrm{c}}=\nabla^{g}+\frac{1}{2} T^{\mathrm{c}}$ and $T^{\mathrm{c}}=-\frac{\tau_{0}}{6} \varphi$.
\rightsquigarrow Comparison formulae.
- G_{2}-equivariant bundle map $\operatorname{Sym}_{0}^{2} \cong \Lambda_{27}^{3}$.

Theorem (Alexandrov-Semmelmann 2011)

$\varepsilon(g) \cong\left\{\gamma \in \Omega_{27}^{3} \mid * d \gamma=-\tau_{0} \gamma\right\} \oplus\left\{\gamma \in \Omega_{27}^{3} \left\lvert\, * d \gamma=\frac{\tau_{0}}{2} \gamma\right.\right\} \oplus\left\{\gamma \in \Omega_{27}^{3} \left\lvert\, d d^{*} \gamma=\frac{\tau_{0}^{2}}{2} \gamma\right.\right\}$.
Normal homogeneous examples: $\varepsilon(g)=0$ for B, S_{sq}^{7} and $\varepsilon(g) \cong \mathfrak{s u}(3)$ for $N_{1,1}$.

Theorem (Wang-Wang 2018, Semmelmann-Wang-Wang 2020)

All compact s.c. homogeneous non-symmetric Einstein 7-manifolds are unstable.

Δ_{L} on normal homogeneous spaces

$(M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some $\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.

Δ_{L} on normal homogeneous spaces

($M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some
$\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.
- $\bar{\nabla}$ canonical reductive connection.

Δ_{L} on normal homogeneous spaces

($M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some $\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.
- $\bar{\nabla}$ canonical reductive connection.
- $\bar{T}=-\mathcal{A}$ skew-symmetric, where $\mathcal{A}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}$.

Δ_{L} on normal homogeneous spaces

($M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some
$\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.
- $\bar{\nabla}$ canonical reductive connection.
- $\bar{T}=-\mathcal{A}$ skew-symmetric, where $\mathcal{A}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}$.
- $\nabla^{g}=\bar{\nabla}+\frac{1}{2} \mathcal{A}$.

Δ_{L} on normal homogeneous spaces

($M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some $\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.
- $\bar{\nabla}$ canonical reductive connection.
- $\bar{T}=-\mathcal{A}$ skew-symmetric, where $\mathcal{A}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}$.
- $\nabla^{g}=\bar{\nabla}+\frac{1}{2} \mathcal{A}$.
$\rightsquigarrow \Delta_{\mathrm{L}}=\bar{\Delta}+\mathcal{A}^{*} \bar{\nabla}+\frac{1}{4} \mathcal{A}^{*} \mathcal{A}+q\left(R^{g}\right)-q(\bar{R})$.

Δ_{L} on normal homogeneous spaces

($M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some
$\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.
- $\bar{\nabla}$ canonical reductive connection.
- $\bar{T}=-\mathcal{A}$ skew-symmetric, where $\mathcal{A}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}$.
- $\nabla^{g}=\bar{\nabla}+\frac{1}{2} \mathcal{A}$.
$\rightsquigarrow \Delta_{\mathrm{L}}=\bar{\Delta}+\mathcal{A}^{*} \bar{\nabla}+\frac{1}{4} \mathcal{A}^{*} \mathcal{A}+q\left(R^{g}\right)-q(\bar{R})$.
- S.-Semmelmann-Weingart 2022: $q\left(R^{g}\right)-q(\bar{R})=\frac{1}{4} \mathcal{A}^{*} \mathcal{A}$ on symmetric tensors.

Δ_{L} on normal homogeneous spaces

($M=G / H, g)$ normal homogeneous space, i.e. $g_{o}=\left.Q\right|_{\mathfrak{m}}$ for some
$\operatorname{Ad}(G)$-invariant inner product Q on \mathfrak{g}.

- It follows that M is naturally reductive.
- $\bar{\nabla}$ canonical reductive connection.
- $\bar{T}=-\mathcal{A}$ skew-symmetric, where $\mathcal{A}_{o}(X, Y)=-[X, Y]_{\mathfrak{m}}$.
- $\nabla^{g}=\bar{\nabla}+\frac{1}{2} \mathcal{A}$.
$\rightsquigarrow \Delta_{\mathrm{L}}=\bar{\Delta}+\mathcal{A}^{*} \bar{\nabla}+\frac{1}{4} \mathcal{A}^{*} \mathcal{A}+q\left(R^{g}\right)-q(\bar{R})$.
- S.-Semmelmann-Weingart 2022: $q\left(R^{g}\right)-q(\bar{R})=\frac{1}{4} \mathcal{A}^{*} \mathcal{A}$ on symmetric tensors.
- How to make sense of $\mathcal{A}^{*} \bar{\nabla}, \mathcal{A}^{*} \mathcal{A}$?

Δ_{L} on normal homogeneous spaces

$(M=G / H, g)$ normal homogeneous space, $\mathcal{A}_{o}(X, Y)=[X, Y]_{\mathfrak{m}}$.

Theorem (S.-Semmelmann-Weingart 2022)

With the inclusion $\mathfrak{m}^{\otimes p} \subset \mathfrak{g}^{\otimes p}$,

$$
\left.\mathcal{A}^{*} \mathcal{A}\right|_{\mathfrak{m} \otimes p}=\left.\operatorname{pr}_{\mathfrak{m} \otimes p} \operatorname{Cas}_{\mathfrak{g}^{\bullet} \otimes p}^{\mathfrak{g}}\right|_{\mathfrak{m} \otimes p}-\operatorname{Cas}_{\mathfrak{m} \otimes p}^{\mathfrak{h}}-\operatorname{Der}_{\operatorname{Cas}_{\mathfrak{m}}^{\mathfrak{b}}} .
$$

Δ_{L} on normal homogeneous spaces

$(M=G / H, g)$ normal homogeneous space, $\mathcal{A}_{o}(X, Y)=[X, Y]_{\mathfrak{m}}$.

Theorem (S.-Semmelmann-Weingart 2022)

With the inclusion $\mathfrak{m}^{\otimes p} \subset \mathfrak{g}^{\otimes p}$,

$$
\left.\mathcal{A}^{*} \mathcal{A}\right|_{\mathfrak{m} \otimes p}=\left.\operatorname{pr}_{\mathfrak{m} \otimes p} \operatorname{Cas}_{\mathfrak{g}^{\bullet} \otimes p}^{\mathfrak{g}}\right|_{\mathfrak{m} \otimes p}-\operatorname{Cas}_{\mathfrak{m} \otimes p}^{\mathfrak{h}}-\operatorname{Der}_{\operatorname{Cas}_{\mathfrak{m}}^{\mathfrak{b}}} .
$$

Theorem (S. 2023)

With the inclusion $C^{\infty}\left(G, \mathfrak{m}^{\otimes p}\right)^{H} \subset C^{\infty}\left(G, \mathfrak{g}^{\otimes p}\right) \cong C^{\infty}(G) \otimes \mathfrak{g}^{\otimes p}$,

$$
\left.\mathcal{A}^{*} \bar{\nabla}\right|_{C^{\infty}\left(G, \mathfrak{m}^{\otimes p}\right)^{H}}=\frac{1}{2} \operatorname{Cas}_{\ell}^{\mathfrak{g}}+\frac{1}{2} \operatorname{pr}_{\mathfrak{m} \otimes p}\left(\operatorname{Cas}_{\mathfrak{g}^{\otimes p}}^{\mathfrak{g}}-\operatorname{Cas}_{C^{\infty}(G) \otimes \mathfrak{g} \otimes p}^{\mathfrak{g}}\right)-\operatorname{Cas}_{\mathfrak{m} \otimes p}^{\mathfrak{h}} .
$$

Hence on symmetric tensors, if g is Einstein:
$\left.\Delta_{\mathrm{L}}\right|_{\operatorname{Sym}^{p} \mathfrak{m}}=\frac{3}{2} \operatorname{Cas}_{\ell}^{\mathfrak{g}}+\operatorname{pr}_{\operatorname{Sym}^{p} \mathfrak{m}}\left(\operatorname{Cas}_{\operatorname{Sym}^{p} \mathfrak{g}}^{\mathfrak{g}}-\frac{1}{2} \operatorname{Cas}_{C^{\infty}(G) \otimes \mathfrak{g}^{\otimes p}}^{\mathfrak{g}}\right)-\frac{3}{2} \operatorname{Cas}_{\operatorname{Sym}^{p} \mathfrak{m}}^{\mathfrak{h}}-p E+\frac{p}{4}$.

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Normal homogeneous Einstein manifolds $M=G / H$ with G simple:

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Normal homogeneous Einstein manifolds $M=G / H$ with G simple:

- Irreducible symmetric spaces of compact type (Stability analysis: Koiso 1980, S. 2022, Semmelmann-Weingart 2022).

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Normal homogeneous Einstein manifolds $M=G / H$ with G simple:

- Irreducible symmetric spaces of compact type (Stability analysis: Koiso 1980, S. 2022, Semmelmann-Weingart 2022).
- Wolf 1968: Classification of non-symmetric isotropy irreducible spaces.

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Normal homogeneous Einstein manifolds $M=G / H$ with G simple:

- Irreducible symmetric spaces of compact type (Stability analysis: Koiso 1980, S. 2022, Semmelmann-Weingart 2022).
- Wolf 1968: Classification of non-symmetric isotropy irreducible spaces.
- Wang-Ziller 1985: Classification of isotropy reducible spaces, G simple, normal Einstein metric.
(The G-stability of these had been analyzed by E. Lauret, J. Lauret, C. Will.)

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Normal homogeneous Einstein manifolds $M=G / H$ with G simple:

- Irreducible symmetric spaces of compact type (Stability analysis: Koiso 1980, S. 2022, Semmelmann-Weingart 2022).
- Wolf 1968: Classification of non-symmetric isotropy irreducible spaces.
- Wang-Ziller 1985: Classification of isotropy reducible spaces, G simple, normal Einstein metric.
(The G-stability of these had been analyzed by E. Lauret, J. Lauret, C. Will.)
- In total: 19 infinite families, 35 isolated exceptions.

Δ_{L} on normal homogeneous spaces

- Casimir eigenvalues are amenable to calculation.
- Estimates, computer implementation...

Normal homogeneous Einstein manifolds $M=G / H$ with G simple:

- Irreducible symmetric spaces of compact type (Stability analysis: Koiso 1980, S. 2022, Semmelmann-Weingart 2022).
- Wolf 1968: Classification of non-symmetric isotropy irreducible spaces.
- Wang-Ziller 1985: Classification of isotropy reducible spaces, G simple, normal Einstein metric.
(The G-stability of these had been analyzed by E. Lauret, J. Lauret, C. Will.)
- In total: 19 infinite families, 35 isolated exceptions.
\rightsquigarrow many new stability results for Einstein metrics with scal ${ }_{g}>0$ (S. 2023).

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g?

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g ? (Einstein deformations)

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g ? (Einstein deformations)
- Obvious deformations:

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.
- Action by diffeomorphism: $g_{t}=\varphi_{t}^{*} g$, where $\varphi_{t} \in \operatorname{Diff}(M)$.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.
- Action by diffeomorphism: $g_{t}=\varphi_{t}^{*} g$, where $\varphi_{t} \in \operatorname{Diff}(M)$.
- Transverse to those: Essential Einstein deformations.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.
- Action by diffeomorphism: $g_{t}=\varphi_{t}^{*} g$, where $\varphi_{t} \in \operatorname{Diff}(M)$.
- Transverse to those: Essential Einstein deformations.
- Moduli space $\mathscr{E}:=\{g$ Einstein metric on $M\} /\left(\mathbb{R}_{+} \times \operatorname{Diff}(M)\right)$.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.
- Action by diffeomorphism: $g_{t}=\varphi_{t}^{*} g$, where $\varphi_{t} \in \operatorname{Diff}(M)$.
- Transverse to those: Essential Einstein deformations.
- Moduli space $\mathscr{E}:=\{g$ Einstein metric on $M\} /\left(\mathbb{R}_{+} \times \operatorname{Diff}(M)\right)$.
- g is called rigid if $[g]$ is isolated in \mathscr{E}.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.
- Action by diffeomorphism: $g_{t}=\varphi_{t}^{*} g$, where $\varphi_{t} \in \operatorname{Diff}(M)$.
- Transverse to those: Essential Einstein deformations.
- Moduli space $\mathscr{E}:=\{g$ Einstein metric on $M\} /\left(\mathbb{R}_{+} \times \operatorname{Diff}(M)\right)$.
- g is called rigid if $[g]$ is isolated in \mathscr{E}.
- Koiso 1980: either g is rigid or it admits an essential Einstein deformation.

Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

- Are there any other Einstein metrics "near" g ?
- Are there smooth curves of Einstein metrics through g? (Einstein deformations)
- Obvious deformations:
- Scaling by a constant: $g_{t}=t \cdot g$, where $t \in \mathbb{R}^{+}$.
- Action by diffeomorphism: $g_{t}=\varphi_{t}^{*} g$, where $\varphi_{t} \in \operatorname{Diff}(M)$.
- Transverse to those: Essential Einstein deformations.
- Moduli space $\mathscr{E}:=\{g$ Einstein metric on $M\} /\left(\mathbb{R}_{+} \times \operatorname{Diff}(M)\right)$.
- g is called rigid if $[g]$ is isolated in \mathscr{E}.
- Koiso 1980: either g is rigid or it admits an essential Einstein deformation.
- $\varepsilon(g)=0 \Longrightarrow g$ is rigid.

Deformation theory of Einstein metrics

- Consider the Einstein operator

$$
\mathcal{E}: \mathscr{M}_{1} \rightarrow \mathscr{S}^{2}: g \mapsto \operatorname{Ric}_{g}-\frac{S_{g}}{n}
$$

Deformation theory of Einstein metrics

- Consider the Einstein operator

$$
\mathcal{E}: \mathscr{M}_{1} \rightarrow \mathscr{S}^{2}: g \mapsto \operatorname{Ric}_{g}-\frac{S_{g}}{n}
$$

- An IED $h \in \varepsilon(g)$ is integrable to order k if $\exists h_{2}, \ldots, h_{k} \in \mathscr{S} 2(M)$ such that the curve

$$
g_{k}(t):=g+t h+\sum_{j=2}^{k} \frac{t^{j}}{j!} h_{j}
$$

satisfies $\left.\frac{d^{j}}{d t^{j}} \mathcal{E}\left(g_{k}(t)\right)\right|_{t=0}=0$ for all $j=1, \ldots, k$.

Deformation theory of Einstein metrics

- Consider the Einstein operator

$$
\mathcal{E}: \mathscr{M}_{1} \rightarrow \mathscr{S}^{2}: g \mapsto \operatorname{Ric}_{g}-\frac{S_{g}}{n}
$$

- An IED $h \in \varepsilon(g)$ is integrable to order k if $\exists h_{2}, \ldots, h_{k} \in \mathscr{S} 2(M)$ such that the curve

$$
g_{k}(t):=g+t h+\sum_{j=2}^{k} \frac{t^{j}}{j!} h_{j}
$$

satisfies $\left.\frac{d^{j}}{d t^{j}} \mathcal{E}\left(g_{k}(t)\right)\right|_{t=0}=0$ for all $j=1, \ldots, k$.

- An IED $h \in \varepsilon(g)$ is integrable into a curve of Einstein metrics if and only if it is integrable to order k for every $k \in \mathbb{N}$.

Deformation theory of Einstein metrics

- Consider the Einstein operator

$$
\mathcal{E}: \mathscr{M}_{1} \rightarrow \mathscr{S}^{2}: g \mapsto \operatorname{Ric}_{g}-\frac{S_{g}}{n}
$$

- An IED $h \in \varepsilon(g)$ is integrable to order k if $\exists h_{2}, \ldots, h_{k} \in \mathscr{S} 2(M)$ such that the curve

$$
g_{k}(t):=g+t h+\sum_{j=2}^{k} \frac{t^{j}}{j!} h_{j}
$$

satisfies $\left.\frac{d^{j}}{d t j} \mathcal{E}\left(g_{k}(t)\right)\right|_{t=0}=0$ for all $j=1, \ldots, k$.

- An IED $h \in \varepsilon(g)$ is integrable into a curve of Einstein metrics if and only if it is integrable to order k for every $k \in \mathbb{N}$.
\rightsquigarrow polynomial obstructions.

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.
- $h \in \varepsilon(g)$ integrable to second order $\Longleftrightarrow \mathcal{I}(h, h, k)=0$ for all $k \in \varepsilon(g)$.

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.
- $h \in \varepsilon(g)$ integrable to second order $\Longleftrightarrow \mathcal{I}(h, h, k)=0$ for all $k \in \varepsilon(g)$.
- Koiso 1982:

$$
\mathcal{I}(h, h, h)=\int_{M}\left(2 E \operatorname{tr}_{g}\left(h^{3}\right)+3\left(\nabla^{2} h\right)_{i j k l} h_{i j} h_{k l}-6\left(\nabla^{2} h\right)_{i j k l} h_{i k} h_{j l}\right) \operatorname{vol}_{g}
$$

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.
- $h \in \varepsilon(g)$ integrable to second order $\Longleftrightarrow \mathcal{I}(h, h, k)=0$ for all $k \in \varepsilon(g)$.
- Koiso 1982:

$$
\mathcal{I}(h, h, h)=\int_{M}\left(2 E \operatorname{tr}_{g}\left(h^{3}\right)+3\left(\nabla^{2} h\right)_{i j k l} h_{i j} h_{k l}-6\left(\nabla^{2} h\right)_{i j k l} h_{i k} h_{j l}\right) \operatorname{vol}_{g}
$$

- Koiso 1982: IED of $\mathbb{C P}^{2 k} \times \mathbb{C P}^{1}$ are not integrable to order two.

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.
- $h \in \varepsilon(g)$ integrable to second order $\Longleftrightarrow \mathcal{I}(h, h, k)=0$ for all $k \in \varepsilon(g)$.
- Koiso 1982:

$$
\mathcal{I}(h, h, h)=\int_{M}\left(2 E \operatorname{tr}_{g}\left(h^{3}\right)+3\left(\nabla^{2} h\right)_{i j k l} h_{i j} h_{k l}-6\left(\nabla^{2} h\right)_{i j k l} h_{i k} h_{j l}\right) \operatorname{vol}_{g}
$$

- Koiso 1982: IED of $\mathbb{C P}^{2 k} \times \mathbb{C P}^{1}$ are not integrable to order two.
- Batat et al. 2021: IED of the bi-invariant metric on $\mathrm{SU}(2 n+1)$ are not integrable to order two.

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.
- $h \in \varepsilon(g)$ integrable to second order $\Longleftrightarrow \mathcal{I}(h, h, k)=0$ for all $k \in \varepsilon(g)$.
- Koiso 1982:

$$
\mathcal{I}(h, h, h)=\int_{M}\left(2 E \operatorname{tr}_{g}\left(h^{3}\right)+3\left(\nabla^{2} h\right)_{i j k l} h_{i j} h_{k l}-6\left(\nabla^{2} h\right)_{i j k l} h_{i k} h_{j l}\right) \operatorname{vol}_{g}
$$

- Koiso 1982: IED of $\mathbb{C P}^{2 k} \times \mathbb{C P}^{1}$ are not integrable to order two.
- Batat et al. 2021: IED of the bi-invariant metric on $\mathrm{SU}(2 n+1)$ are not integrable to order two.
- S. 2022: IED of nearly Kähler $F_{1,2}$ are not integrable to order two.

Deformation theory of Einstein metrics

- $\mathcal{I} \in \operatorname{Sym}^{3} \varepsilon(g)^{*}, \mathcal{I}\left(h_{1}, h_{2}, h_{3}\right)=\left(\mathcal{E}_{g}^{\prime \prime}\left(h_{1}, h_{2}\right), h_{3}\right)_{L^{2}}$ second order obstruction.
- $h \in \varepsilon(g)$ integrable to second order $\Longleftrightarrow \mathcal{I}(h, h, k)=0$ for all $k \in \varepsilon(g)$.
- Koiso 1982:

$$
\mathcal{I}(h, h, h)=\int_{M}\left(2 E \operatorname{tr}_{g}\left(h^{3}\right)+3\left(\nabla^{2} h\right)_{i j k l} h_{i j} h_{k l}-6\left(\nabla^{2} h\right)_{i j k l} h_{i k} h_{j l}\right) \operatorname{vol}_{g}
$$

- Koiso 1982: IED of $\mathbb{C P}^{2 k} \times \mathbb{C P}^{1}$ are not integrable to order two.
- Batat et al. 2021: IED of the bi-invariant metric on $\mathrm{SU}(2 n+1)$ are not integrable to order two.
- S. 2022: IED of nearly Kähler $F_{1,2}$ are not integrable to order two.
- Nagy-Semmelmann 2023: IED of Grassmannian $\operatorname{Gr}_{\mathbb{C}}(2, n)$ are not integrable to order two.

Other deformation theories

- Moroianu-Nagy-Semmelmann 2008, Foscolo 2016: Deformations of Gray manifolds

Other deformation theories

- Moroianu-Nagy-Semmelmann 2008, Foscolo 2016: Deformations of Gray manifolds
- Alexandrov-Semmelmann 2011, Nagy-Semmelmann 2021: Deformations of nearly parallel G_{2} manifolds

Other deformation theories

- Moroianu-Nagy-Semmelmann 2008, Foscolo 2016: Deformations of Gray manifolds
- Alexandrov-Semmelmann 2011, Nagy-Semmelmann 2021: Deformations of nearly parallel G_{2} manifolds
- In both cases: Infinitesimal deformations = certain eigenspace of a Laplace operator.

Other deformation theories

- Moroianu-Nagy-Semmelmann 2008, Foscolo 2016: Deformations of Gray manifolds
- Alexandrov-Semmelmann 2011, Nagy-Semmelmann 2021: Deformations of nearly parallel G_{2} manifolds
- In both cases: Infinitesimal deformations = certain eigenspace of a Laplace operator.
- In both cases: Second order obstruction = cubic polynomial in the variations.

Other deformation theories

- Moroianu-Nagy-Semmelmann 2008, Foscolo 2016: Deformations of Gray manifolds
- Alexandrov-Semmelmann 2011, Nagy-Semmelmann 2021: Deformations of nearly parallel G_{2} manifolds
- In both cases: Infinitesimal deformations = certain eigenspace of a Laplace operator.
- In both cases: Second order obstruction = cubic polynomial in the variations.
- In both cases: Deformations \subset Einstein deformations.

Other deformation theories

- Moroianu-Nagy-Semmelmann 2008, Foscolo 2016: Deformations of Gray manifolds
- Alexandrov-Semmelmann 2011, Nagy-Semmelmann 2021: Deformations of nearly parallel G_{2} manifolds
- In both cases: Infinitesimal deformations = certain eigenspace of a Laplace operator.
- In both cases: Second order obstruction = cubic polynomial in the variations.
- In both cases: Deformations \subset Einstein deformations.
- Rigidity results for infinitesimally deformable structures: $F_{1,2}$ (Foscolo 2016), $N_{1,1}$ (Nagy-Semmelmann 2021).

