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Integrable geometries: a reminder

Setting: (M, g) Riemannian manifold, ∇g Levi-Civita connection.

Theorem (Berger 1955)
(Mn, g) simply connected, non-symmetric such that Hol(∇g) ↷ TM irreducibly
(holonomy irreducible). Then Hol(∇g) is one of

SO(n), U(n), SU(n), Sp(m) Sp(1), Sp(m), G2, Spin(7), [Spin(9)].

By de Rham’s theorem, a simply connected (M, g) with reducible holonomy is a
Riemannian product of manifolds with irreducible holonomy.
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Integrable geometries: a reminder

(Mn, g) oriented Riemannian manifold, G ⊂ SO(n) closed subgroup.
. Fr(M) bundle of orthonormal frames, SO(n)-principal bundle.

. A G-structure on M is a reduction P ↪→ Fr(M) of the frame bundle, where P
is a G-principal bundle.

. Principal connections on P ⇝ G-connections on TM , Hol ⊂ G.

. If Hol(M, g) ⊂ G, then ∇g comes from a principal connection on a G-structure.
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Nonintegrable geometries

(Mn, g) oriented Riemannian manifold with a G-structure P .
. Z ∈ Ω1(Fr(M), so(n)) connection form associated to ∇g.

. so(n) = g⊕ g⊥.
⇝ Z

∣∣
TP

= Z ′ ⊕ Γ
. Z ′ ∈ Ω1(P, g) is the natural metric connection on P .
. Γ ∈ Ω1(P, g⊥) is the intrinsic torsion of P .
. A nonintegrable geometry is (M, g, P ) such that Γ ̸= 0.
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Nonintegrable geometries: Characteristic connections
(Mn, g) oriented Riemannian manifold with a G-structure P .

Theorem (Friedrich–Ivanov 2002)
M admits a G-connection ∇c with skew-symmetric torsion T c ∈ Ω3(M) if and only
if Γ ∈ imΘ, where

Θ : Λ3Rn → Rn ⊗ g⊥, Θ(T ) =
∑
i

(ei⌟T )⊗ ei,

(ei) ONB of g⊥. In this case
2Γ = −Θ(T c).

. ∇c is called a characteristic G-connection.

. ∇c is not automatically unique – but in many applications it is.

. ∇c has the same geodesics as ∇g.
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Nonintegrable geometries: Characteristic connections

(Mn, g) oriented Riemannian manifold with a G-structure P admitting a
characteristic connection ∇.

. An analogue of the de Rham Theorem for ∇c does not hold – thus reducible
holonomy becomes interesting (Cleyton–Moroianu–Semmelmann 2020).

. ∇c
XY = ∇g

XY + 1
2T

c(X,Y ).
. Examples of nonintegrable geometries are manifolds with special weak

holonomy (introduced by Gray in 1971), e.g.

. nearly Kähler manifolds (weak holonomy U(n)),

. nearly parallel G2-manifolds.

Spinor approach to holonomy:

. Integrable: Hol(∇g) = SU(n),Sp(n),G2,Spin(7) related to ∇g-parallel spinors.

. Nonintegrable: T c-parallel spinors = Killing spinors.

. E.g. Einstein–Sasaki manifolds, 3-Sasaki manifolds.
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Nonintegrable geometries: parallel torsion

Theorem (Cleyton–Swann 2004)
(M, g, P ) nonintegrable geometry with G-connection ∇ such that ∇T = 0 and
Hol(∇) ↷ TM irreducibly. Then one of the following holds:

1 (M, g) is locally isometric to a non-symmetric isotropy irreducible
homogeneous space,

2 (M, g) is locally isometric to (G×G)/∆G or GC/G,
3 (M, g) is nearly Kähler,
4 (M, g) is nearly parallel G2.

In cases 1, 3, 4: ∇ = ∇c, hence T is skew-symmetric.
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Nearly Kähler manifolds

Kähler manifolds
. (M2m, g, J, ω) Hermitian manifold

with dω = 0.

. Automatically ∇gω = 0.

. Hol(∇g) ⊂ U(m).

Nearly Kähler manifolds

. (M2m, g, J, ω) almost Hermitian
manifold, ∇gω skew-symmetric.

. ∇c canonical Hermitian connection,
∇cg = 0, ∇cω = 0.

. T c(X,Y ) = −J(∇g
XJ)Y .

. Hol(∇c) ⊂ U(m), also weak
holonomy U(m) in the sense of
Gray.

In dimension 6, strictly nearly Kähler:

. actually structure reduces to SU(3)

. ∃ Killing spinor, thus g is Einstein with scalg > 0.

. Cone M̄ = M ×r2 R+ has a parallel spinor, Hol(∇ḡ) = G2.
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Nearly parallel G2-manifolds
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If (M, g, φ) is proper nearly parallel G2 (not Sasakian):
. Cone M̄ = M ×r2 R+ has a parallel spinor, Hol(∇ḡ) = Spin(7).
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Reductive homogeneous spaces

G Lie group, H closed subgroup, M = G/H.
. M is called reductive if there is an Ad(H)-invariant decomposition g = h⊕m.

. H compact =⇒ M reductive.

. m is called reductive complement, m ∼= ToM isotropy representation of H.

. The principal bundle G → G/H is a H-structure on M .
⇝ Canonical reductive connection ∇̄ (also Ambrose–Singer connection).
. Every G-invariant tensor on M is ∇̄-parallel.
. T̄o(X,Y ) = −[X,Y ]m, X, Y ∈ m ∼= ToM .
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Naturally reductive homogeneous spaces

M = G/H reductive homogeneous space, g = h⊕m. Assume M simply
connected, G effective.

. g invariant Riemannian metric on M =⇒ H ⊂ SO(m).

. (M, g) is called naturally reductive if

g([Z,X]m, Y ) + g(X, [Z, Y ]m) = 0, X, Y, Z ∈ m.

. In this case ∇̄ is the unique characteristic connection of the H-structure
G → G/H.

. T̄o(X,Y ) = −[X,Y ]m is skew-symmetric.

. Examples: All normal homogeneous spaces, in particular symmetric spaces
and isotropy irreducible homogeneous spaces.

. T̄ = 0 ⇐⇒ ∇c = ∇g ⇐⇒ M symmetric.
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Homogeneous classifications
. Butruille 2005: Classification of homogeneous Gray manifolds (compact

s.c. strict 6-dim. nK manifolds).

. These are the normal homogeneous spaces

S6 =
G2

SU(3)
, S3 × S3 =

SU(2)3

∆SU(2)
, CP3 =

Sp(2)

Sp(1)U(1)
, F1,2 =

SU(3)

T 2
.

. Friedrich et al. 1997: Classification of homogeneous compact, s.c. nG2

manifolds.
. These are the normal homogeneous spaces

B =
SO(5)

SO(3)irr
, S7

sq =
Sp(2)× Sp(1)

Sp(1)× Sp(1)
,

two non-isometric metrics on each of the Aloff–Wallach spaces

Nk,l =
SU(3)

S1
k,l

, S1
k,l = {(zk, zl) | z ∈ S1} ⊂ T 2, k, l coprime,

plus Einstein–Sasaki spaces (also known).
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The Einstein–Hilbert action

M compact, oriented. For a Riemannian metric g on M , let

Sg :=

∫
M

scalg volg

be its total scalar curvature or Einstein–Hilbert action.

. M1 := {g Riem. metric on M,
∫
M volg = 1}.

. For g ∈ M1: g critical point of S
∣∣
M1

⇐⇒ Ricg = Eg for some E ∈ R.
. What is the type of these critical points?
. Consider the second variation S′′

g . Also suppose (M, g) ̸= (Sn, ground).
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The second variation of S

Suppose (M, g) ̸∼= (Sn, ground).
. TgM1 = C∞

g (M)g ⊕ LX(M)g ⊕ S 2
tt(M), where

C∞
g (M) := {f ∈ C∞(M) |

∫
M f volg = 0},

LX(M)g := {LXg |X ∈ X(M)},
S 2

tt(M) := {h ∈ S 2(M) | trg h = 0, δgh = 0}.

. The above splitting is orthogonal with respect to S′′
g .

. S′′
g > 0 on C∞

g (M)g, i.e. g locally minimizes S along conformal change,
. S′′

g = 0 on LX(M)g, i.e. Sg is unchanged under diffeomorphisms,
. S′′

g has finite coindex and nullity, i.e. is "‘mostly negative"’ in S 2
tt(M).

. For h ∈ S 2
tt(M), S′′

g (h, h) = −1
2 (∆Lh− 2Eh, h)L2 , where ∆L is the
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The Lichnerowicz Laplacian
(M, g) compact, oriented Riemannian manifold. ∇ Levi-Civita connection. R
Riemannian curvature.

. Recall the Weitzenböck formula for the Hodge–de Rham Laplacian on
differential forms Ωp(M):

∆ = d∗d+ dd∗ = ∇∗∇+ q(R).

. (Standard) curvature endomorphism:

q(R) =
∑
i

(ωi)∗ ◦ R̂(ωi)∗,

where R̂ : Λ2TM → Λ2TM is the curvature operator of the first kind, and (ωi)
is a local ONB of so(TM) ∼= Λ2TM . Correspondence:

(X ∧ Y )∗Z = g(X,Z)Y − g(Y, Z)X.
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The Lichnerowicz Laplacian

Curvature endomorphism: q(R) =
∑

i(ωi)∗ ◦R(ωi)∗. Examples:
. On TM : q(R) = Ric.

. On Λ2TM : q(R) = 2R̂−DerRic.

. On Sym2 TM : q(R) = 2R̊−DerRic, where R̊ : Sym2 TM → Sym2 TM is the
curvature operator of the second kind. (up to sign convention)

Both ∇∗∇ and q(R) are definable on any tensor bundle Fr(M)×SO(n) V , facilitating
the definition

∆L := ∇∗∇+ q(R)

of the Lichnerowicz Laplacian.
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Linear stability & infinitesimal deformability

For h ∈ S 2
tt(M): S′′

g (h, h) = −1
2 (∆Lh− 2Eh, h)L2 .

. An Einstein metric g is called

. stable if ∆L > 2E (S′′
g < 0) on S 2

tt(M),
. semistable if ∆L ≥ 2E (S′′

g ≤ 0) on S 2
tt(M),

. unstable if ∆L ̸≥ 2E on S 2
tt(M) (∃h ∈ S 2

tt(M) : S′′
g (h, h) > 0).

. stable =⇒ local maximum of S among unit volume metrics of constant scalar
curvature.

. Null directions for S′′
g in S 2

tt(M), i.e. elements of

ε(g) = {h ∈ S 2
tt(M) |∆Lh = 2Eh}

are called infinitesimal Einstein deformations. ⇝ Einstein moduli
. Question: Does ∆L have small eigenvalues on S 2

tt(M)?
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∆L on Gray manifolds
(M6, g, J) compact s.c. nK manifold. Normalize such that scalg = 30.

. Goal: Solve the differential system

∆Lh = λh, δgh = 0 (L)

in h ∈ S 2
0 (M) for some λ ≤ 2E = 10.

. Idea: Relate eigenspaces of ∆L to eigenspaces of ∆c := ∇c∗∇c + q(Rc) (the
standard Laplacian of ∇c).

. ∇c = ∇g + 1
2T

c and T c(X,Y ) = −J(∇XJ)Y .
⇝ comparison formulae for ∇g∗∇g −∇c∗∇c, q(Rg)− q(Rc) on various bundles

(Moroianu–Semmelmann 2010, 2011).
⇝ System (L) is equivalent to

(∇̄∗∇̄+ q(R̄))h+ = (λ− 6)h+ + (δσ)1,1 ◦ J,
(∇̄∗∇̄+ q(R̄))h− = (λ− 4)h− − s,

δh+ + δh− = 0.

(L’)
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∆L on Gray manifolds

(M6, g, J) compact s.c. nK manifold.
. SU(3)-equivariant bundle maps: Sym2

0,+
∼= Λ1,1

0,R, Sym2
−
∼= Λ2,1

0,R.

⇝ If λ < 16, system (L’) is equivalent to
∆φ = (λ− 6)φ− δσ,

∆σ = (λ− 4)σ − 4dφ,

δφ = 0,

δσ ∈ Ω
(1,1)
0,R .

(L”)

. Note: ∆c = ∆ on Ω1,1
0,R ∩ ker δg.
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∆L on Gray manifolds
(M6, g, J) compact s.c. nK manifold. Denote E(µ) := ker(∆− µ)

∣∣
Ω1,1

0,R
∩ ker δg.

Theorem (S. 2022)
Suppose λ = 10− ε in system (L). The space of solutions of (L) is isomorphic to

1 E(µ1)⊕ E(µ2)⊕ E(µ3) with

µ1,2 = 7− ε±
√
25− 4ε, µ3 = 6− ε

if ε < 25
4 , ε ̸= 6,

2 E(2)⊕ ker∆
∣∣
Ω3 if ε = 6,

3 E(34) if ε = 25
4 ,

4 trivial if ε > 25
4 .

In particular ε(g) ∼= E(2)⊕ E(6)⊕ E(12) (Moroianu–Semmelmann 2011).
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∆L on homogeneous Gray manifolds

(M6 = G/H, g, J) compact homogeneous s.c. nK manifold.
. The canonical Hermitian connection ∇c coincides with the canonical reductive

connection ∇̄.

. ∆̄ := ∇̄∗∇̄+ q(R̄) standard Laplacian of ∇̄.

. Peter–Weyl for homogeneous vector bundles VM = G×H V :

Γ(VM) =
⊕
γ∈Ĝ

Vγ ⊗HomH(Vγ , V ).

. ∆̄ = CasG on Γ(VM).

. Freudenthal’s formula: CasG
∣∣
Vγ

= ⟨γ, γ + 2ρg⟩ Id.

⇝ Spectrum of ∆̄, hence of ∆ = ∆c = ∆̄ on Ω1,1
0,R ∩ ker δg. Multiplicities given by

dimHomH(Vγ , V ).
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∆L on homogeneous Gray manifolds
(M6 = G/H, g, J) compact homogeneous s.c. nK manifold.

. M = S6 is the round sphere, thus stable.

Theorem (Moroianu–Semmelmann 2011)
ε(g) = 0 except on M = F1,2, where ε(g) ∼= su(3).

Theorem (S. 2022)
The coindex of S′′

g on S 2
tt(M) is

. 2 if M = S3 × S3 (comes from harmonic 3-forms),

. 1 if M = CP3 (comes from harmonic 2-forms),

. 2 if M = F1,2 (comes from harmonic 2-forms).

This proves that the coindex bounds by Semmelmann–Wang–Wang 2020 are
sharp.
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∆L on nearly parallel G2 manifolds

(M7, g, φ) compact nearly parallel G2 manifold.
. Again, relate ∆L to ∆c.

. ∇c = ∇g + 1
2T

c and T c = − τ0
6 φ.

⇝ Comparison formulae.
. G2-equivariant bundle map Sym2

0
∼= Λ3

27.

Theorem (Alexandrov–Semmelmann 2011)

ε(g) ∼=
{
γ ∈ Ω3

27

∣∣ ∗dγ = −τ0γ
}
⊕
{
γ ∈ Ω3

27

∣∣ ∗dγ = τ0
2 γ

}
⊕
{
γ ∈ Ω3

27

∣∣∣ dd∗γ =
τ20
2 γ

}
.

Normal homogeneous examples: ε(g) = 0 for B,S7
sq and ε(g) ∼= su(3) for N1,1.

Theorem (Wang–Wang 2018, Semmelmann–Wang–Wang 2020)
All compact s.c. homogeneous non-symmetric Einstein 7-manifolds are unstable.
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∆L on normal homogeneous spaces

(M = G/H, g) normal homogeneous space, i.e. go = Q
∣∣
m

for some
Ad(G)-invariant inner product Q on g.

. It follows that M is naturally reductive.

. ∇̄ canonical reductive connection.

. T̄ = −A skew-symmetric, where Ao(X,Y ) = −[X,Y ]m.

. ∇g = ∇̄+ 1
2A.

⇝ ∆L = ∆̄ +A∗∇̄+ 1
4A

∗A+ q(Rg)− q(R̄).
. S.–Semmelmann–Weingart 2022: q(Rg)− q(R̄) = 1

4A
∗A on symmetric

tensors.
. How to make sense of A∗∇̄, A∗A?
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∆L on normal homogeneous spaces
(M = G/H, g) normal homogeneous space, Ao(X,Y ) = [X,Y ]m.

Theorem (S.-Semmelmann–Weingart 2022)
With the inclusion m⊗p ⊂ g⊗p,

A∗A
∣∣
m⊗p = prm⊗p Cas

g
g⊗p

∣∣
m⊗p − Cash

m⊗p −Der
Cashm

.

Theorem (S. 2023)
With the inclusion C∞(G,m⊗p)H ⊂ C∞(G, g⊗p) ∼= C∞(G)⊗ g⊗p,

A∗∇̄
∣∣
C∞(G,m⊗p)H

=
1

2
Casgℓ +

1

2
prm⊗p

(
Casg

g⊗p −Casg
C∞(G)⊗g⊗p

)
− Cash

m⊗p .

Hence on symmetric tensors, if g is Einstein:

∆L

∣∣
Symp m

=
3

2
Casgℓ +prSymp m

(
CasgSymp g−

1

2
Casg

C∞(G)⊗g⊗p

)
−3

2
CashSymp m−pE+

p

4
.
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∆L on normal homogeneous spaces

. Casimir eigenvalues are amenable to calculation.

. Estimates, computer implementation...
Normal homogeneous Einstein manifolds M = G/H with G simple:

. Irreducible symmetric spaces of compact type (Stability analysis: Koiso 1980,
S. 2022, Semmelmann–Weingart 2022).

. Wolf 1968: Classification of non-symmetric isotropy irreducible spaces.

. Wang–Ziller 1985: Classification of isotropy reducible spaces, G simple,
normal Einstein metric.
(The G-stability of these had been analyzed by E. Lauret, J. Lauret, C. Will.)

. In total: 19 infinite families, 35 isolated exceptions.
⇝ many new stability results for Einstein metrics with scalg > 0 (S. 2023).
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Rigidity of Einstein metrics

M compact, oriented. g Einstein metric.

. Are there any other Einstein metrics “near” g?

. Are there smooth curves of Einstein metrics through g? (Einstein
deformations)

. Obvious deformations:

. Scaling by a constant: gt = t · g, where t ∈ R+.

. Action by diffeomorphism: gt = φ∗
t g, where φt ∈ Diff(M).

. Transverse to those: Essential Einstein deformations.

. Moduli space E := {g Einstein metric on M}/(R+ ×Diff(M)).

. g is called rigid if [g] is isolated in E .

. Koiso 1980: either g is rigid or it admits an essential Einstein deformation.

. ε(g) = 0 =⇒ g is rigid.
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Deformation theory of Einstein metrics

. Consider the Einstein operator

E : M1 → S 2 : g 7→ Ricg −
Sg

n
.

. An IED h ∈ ε(g) is integrable to order k if ∃h2, . . . , hk ∈ S 2(M) such that the
curve

gk(t) := g + th+

k∑
j=2

tj

j!
hj

satisfies dj

dtj
E(gk(t))

∣∣
t=0

= 0 for all j = 1, . . . , k.
. An IED h ∈ ε(g) is integrable into a curve of Einstein metrics if and only if it is

integrable to order k for every k ∈ N.
⇝ polynomial obstructions.
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Deformation theory of Einstein metrics

. I ∈ Sym3 ε(g)∗, I(h1, h2, h3) =
(
E ′′
g (h1, h2), h3

)
L2 second order obstruction.

. h ∈ ε(g) integrable to second order ⇐⇒ I(h, h, k) = 0 for all k ∈ ε(g).

. Koiso 1982:

I(h, h, h) =
∫
M

(
2E trg(h

3) + 3(∇2h)ijklhijhkl − 6(∇2h)ijklhikhjl
)
volg .

. Koiso 1982: IED of CP2k × CP1 are not integrable to order two.

. Batat et al. 2021: IED of the bi-invariant metric on SU(2n+ 1) are not
integrable to order two.

. S. 2022: IED of nearly Kähler F1,2 are not integrable to order two.

. Nagy–Semmelmann 2023: IED of Grassmannian GrC(2, n) are not integrable
to order two.
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Other deformation theories

. Moroianu–Nagy–Semmelmann 2008, Foscolo 2016: Deformations of Gray
manifolds

. Alexandrov–Semmelmann 2011, Nagy–Semmelmann 2021: Deformations of
nearly parallel G2 manifolds

. In both cases: Infinitesimal deformations = certain eigenspace of a Laplace
operator.

. In both cases: Second order obstruction = cubic polynomial in the variations.

. In both cases: Deformations ⊂ Einstein deformations.

. Rigidity results for infinitesimally deformable structures: F1,2 (Foscolo 2016),
N1,1 (Nagy–Semmelmann 2021).
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