Geometric flows of G_2 -structures

Shubham Dwivedi Humboldt-Universität zu Berlin

Workshop BRIDGES: Special geometries and gauge theories, University of Pau June 19, 2023

based on a work in progress, joint work with

Panagiotis Gianniotis (University of Athens) & Spiro Karigiannis (University of Waterloo) Throughout this talk, we will be working on 7-dimensional manifolds.

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Given local coordinates x^1, \ldots, x^7 on M, define

$$B_{ij}dx^1 \wedge \ldots \wedge dx^7 = \left(\frac{\partial}{\partial x^i} \lrcorner \varphi\right) \wedge \left(\frac{\partial}{\partial x^j} \lrcorner \varphi\right) \wedge \varphi$$

Throughout this talk, we will be working on 7-dimensional manifolds. A G₂-structure on M^7 is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\operatorname{GL}(7,\mathbb{R})$ to the Lie group $\mathsf{G}_2 \leq \operatorname{SO}(7)$.

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Given local coordinates x^1, \ldots, x^7 on M, define

$$\underbrace{B_{ij}}_{mmetric} dx^1 \wedge \ldots \wedge dx^7 = \left(\frac{\partial}{\partial x^i} \lrcorner \varphi\right) \wedge \left(\frac{\partial}{\partial x^j} \lrcorner \varphi\right) \wedge \varphi$$

sy

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Given local coordinates x^1, \ldots, x^7 on M, define

$$\underbrace{B_{ij}}_{\text{symmetric}} dx^1 \wedge \ldots \wedge dx^7 = \left(\frac{\partial}{\partial x^i} \,\lrcorner\varphi\right) \wedge \left(\frac{\partial}{\partial x^j} \,\lrcorner\varphi\right) \wedge \varphi$$

From this, define the symmetric bilinear form g_{ij} by

$$g_{ij} = -rac{1}{6^{rac{2}{9}}}rac{B_{ij}}{\det(B)^{rac{1}{9}}}$$

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Given local coordinates x^1, \ldots, x^7 on M, define

$$\underbrace{B_{ij}}_{\text{symmetric}} dx^1 \wedge \ldots \wedge dx^7 = \left(\frac{\partial}{\partial x^i} \, \lrcorner \varphi\right) \wedge \left(\frac{\partial}{\partial x^j} \, \lrcorner \varphi\right) \wedge \varphi$$

From this, define the symmetric bilinear form g_{ij} by

$$g_{ij} = -rac{1}{6^{rac{2}{9}}}rac{B_{ij}}{\det(B)^{rac{1}{9}}}$$

arphi is nondegenerate \iff g_{ij} is a Riemannian metric.

 G_2 structure $\leftrightarrow i \circ$ "non-degenerate" 3-form $\varphi \rightarrow g_{\varphi}$ and orientation nonlinearly. Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi = \psi$. G_2 structure \iff "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.

Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi=\psi.$

Definition

Let (M^7, φ) be a manifold with a G_2 structure φ and let ∇ be the Levi-Civita connection of g_{φ} . We call (M, φ) a G_2 manifold if $\nabla \varphi = 0$. $\nabla \varphi$ is interpreted as the torsion T of the G_2 structure.

 G_2 structure \iff "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.

Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi=\psi.$

Definition

Let (M^7, φ) be a manifold with a G_2 structure φ and let ∇ be the Levi-Civita connection of g_{φ} . We call (M, φ) a G_2 manifold if $\nabla \varphi = 0$. $\nabla \varphi$ is interpreted as the torsion T of the G_2 structure.

 G_2 manifolds, i.e., those having torsion-free G_2 structure φ are always Ricci-flat and have special holonomy contained in the Lie group $G_2 \subset SO(7)$.

 G_2 structure \iff "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.

Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi = \psi$.

Definition

Let (M^7, φ) be a manifold with a G_2 structure φ and let ∇ be the Levi-Civita connection of g_{φ} . We call (M, φ) a G_2 manifold if $\nabla \varphi = 0$. $\nabla \varphi$ is interpreted as the torsion T of the G_2 structure.

 G_2 manifolds, i.e., those having torsion-free G_2 structure φ are always Ricci-flat and have special holonomy contained in the Lie group $G_2 \subset SO(7)$.

Aside: In 1955, Berger classified all possible Riemannian holonomies. The exceptional case G_2 was believed to not exist until seminal works by Bryant, Salamon, and Joyce, from 1987 to 1996.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

Introduction contd.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

In particular,

$$\Omega^2=\Omega_7^2\oplus\Omega_{14}^2,\quad \Omega^3=\Omega_1^3\oplus\Omega_7^3\oplus\Omega_{27}^3.$$

$$\Omega_7^2 = \{ X \lrcorner \varphi \mid X \in \Gamma(TM) \} = \{ \beta \in \Omega^2 \mid *(\varphi \land \beta) = -2\beta \},\$$
$$\Omega_{14}^2 = \{ \beta \in \Omega^2 \mid *(\varphi \land \beta) = \beta \} = \{ \beta \in \Omega^2 \mid \beta \land \psi = 0 \}$$

Introduction contd.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

In particular,

$$\Omega^2=\Omega_7^2\oplus\Omega_{14}^2, \quad \Omega^3=\Omega_1^3\oplus\Omega_7^3\oplus\Omega_{27}^3,$$

$$\Omega_7^2 = \{ X \lrcorner \varphi \mid X \in \Gamma(TM) \} = \{ \beta \in \Omega^2 \mid *(\varphi \land \beta) = -2\beta \}, \\ \Omega_{14}^2 = \{ \beta \in \Omega^2 \mid *(\varphi \land \beta) = \beta \} = \{ \beta \in \Omega^2 \mid \beta \land \psi = 0 \}$$

For $\sigma \in \Omega^k$ and $A = A_{ij} dx^i \otimes dx^j \in \mathcal{T}^2$, we define

 $(A \diamond \sigma)_{i_1 i_2 \cdots i_k} = A_{i_1}^{\ p} \sigma_{p i_2 \cdots i_k} + A_{i_2}^{\ p} \sigma_{i_1 p i_3 \cdots i_k} + \cdots + A_{i_k}^{\ p} \sigma_{i_1 i_2 \cdots i_{k-1} p},$ in particular $(A \diamond \varphi)_{ijk} = A_i^{\ p} \varphi_{p j k} + A_j^{\ p} \varphi_{i p k} + A_k^{\ p} \varphi_{i j p}.$ Since $\mathcal{T}^2 \cong \Omega^0 \oplus S_0^2 \oplus \Omega_7^2 \oplus \Omega_{14}^2$, it can be proved that $A \in \ker(\cdot \diamond \varphi) \iff A \in \Omega_{14}^2$

 $A\mapsto A\diamond arphi$ is an isomorphism between $S^2\oplus \Omega^2_7$ and Ω^3

Thus, we can describe the 3-forms as

$$\begin{split} \Omega_1^3 &= \{ f\varphi \mid f \in \Omega^0 \}, \quad \Omega_7^3 &= \{ A \diamond \varphi \mid A \in \Omega_7^2 \} = \{ X \lrcorner \psi \mid X \in \Gamma(TM) \}, \\ \Omega_{27}^3 &= \{ A \diamond \varphi \mid A \in S_0^2 \} \end{split}$$

Thus, we can describe the 3-forms as

$$\begin{split} \Omega_1^3 &= \{ f\varphi \mid f \in \Omega^0 \}, \quad \Omega_7^3 &= \{ A \diamond \varphi \mid A \in \Omega_7^2 \} = \{ X \lrcorner \psi \mid X \in \Gamma(TM) \}, \\ \Omega_{27}^3 &= \{ A \diamond \varphi \mid A \in S_0^2 \} \end{split}$$

For $A \in \mathcal{T}^2$, we set

$$(\mathcal{V}A)_k = A_{ij} \varphi^{ij}_k.$$

Only the Ω_7^2 part of A contributes to $\mathcal{V}A$, and we call it the vector part of A. In fact,

$$A_7 = rac{1}{6} (\mathcal{V}A) \lrcorner arphi.$$

Thus, we can describe the 3-forms as

$$\begin{split} \Omega_1^3 = \{ f\varphi \mid f \in \Omega^0 \}, \quad \Omega_7^3 = \{ A \diamond \varphi \mid A \in \Omega_7^2 \} = \{ X \lrcorner \psi \mid X \in \Gamma(TM) \}, \\ \Omega_{27}^3 = \{ A \diamond \varphi \mid A \in S_0^2 \} \end{split}$$

For $A\in \mathcal{T}^2$, we set

$$(\mathcal{V}A)_k = A_{ij}\varphi^{ij}_k.$$

Only the Ω_7^2 part of A contributes to VA, and we call it the vector part of A. In fact,

$$A_7 = rac{1}{6} (\mathcal{V}A) \lrcorner arphi.$$

Thus on (M, φ) , any 3-form can be equivalently described by a pair (h, X) with h a symmetric 2-tensor and $X \in \Gamma(TM)$. We will write

$$\gamma = (h \diamond \varphi) + X \lrcorner \psi.$$

for a 3-form γ .

Torsion of a G₂-structure

• The torsion T is a 2-tensor and is explicitly given as

$$T_{pq} = \frac{1}{24} \nabla_p \varphi_{ijk} \psi_q^{ijk} \qquad (\psi = *_{\varphi} \varphi)$$

• The torsion T is a 2-tensor and is explicitly given as

$$T_{pq} = rac{1}{24}
abla_p arphi_{ijk} \psi_q^{ijk} \qquad (\psi = *_{arphi} arphi)$$

Since $T \in \mathcal{T}^2$, it can be further decomposed as $T = T_1 + T_7 + T_{14} + T_{27}$.

• The torsion T is a 2-tensor and is explicitly given as

$$T_{pq} = \frac{1}{24} \nabla_{p} \varphi_{ijk} \psi_{q}^{ijk} \qquad (\psi = *_{\varphi} \varphi)$$

Since $T \in T^2$, it can be further decomposed as $T = T_1 + T_7 + T_{14} + T_{27}$.

• T satisfies a "Bianchi"-type identity

$$\nabla_i T_{jk} - \nabla_j T_{ik} = T_{ia} T_{jb} \varphi_a^{\ bk} + \frac{1}{2} R_{ijab} \varphi_k^{\ ab}.$$

We expect this as $\phi^*(T_{\varphi}) = T_{\phi^*\varphi}$ for any diffeo. ϕ . We crucially use this for some of our results.

• The torsion T is a 2-tensor and is explicitly given as

$$T_{pq} = \frac{1}{24} \nabla_{p} \varphi_{ijk} \psi_{q}^{ijk} \qquad (\psi = *_{\varphi} \varphi)$$

Since $T \in \mathcal{T}^2$, it can be further decomposed as $T = T_1 + T_7 + T_{14} + T_{27}$.

• T satisfies a "Bianchi"-type identity

$$\nabla_i T_{jk} - \nabla_j T_{ik} = T_{ia} T_{jb} \varphi_a^{\ bk} + \frac{1}{2} R_{ijab} \varphi_k^{\ ab}.$$

We expect this as $\phi^*(T_{\varphi}) = T_{\phi^*\varphi}$ for any diffeo. ϕ . We crucially use this for some of our results.

Theorem (Fernàndez-Gray)

$$(M, \varphi)$$
 is torsion-free, i.e., $T = 0$ ($\iff \nabla \varphi = 0$) if and only if $d\varphi = d\psi = 0$.

Ques. What is the "best" G_2 structure amongst all G_2 structures on M?

Ques. What is the "best" G_2 structure amongst all G_2 structures on M?

(Reasonable) Ans. Torsion free G₂ structures.

Ques. What is the "best" G_2 structure amongst all G_2 structures on M?

(Reasonable) Ans. Torsion free G₂ structures.

A geometric flow is an evolution equation which improves a geometric structure, starting from a given one.

Ques. What is the "best" G_2 structure amongst all G_2 structures on M?

(Reasonable) Ans. Torsion free G₂ structures.

A geometric flow is an evolution equation which improves a geometric structure, starting from a given one.

Given a G_2 structure (not necessarily torsion-free), it is natural to attempt to improve it in some sense to a "better" G_2 structure by using a geometric flow. (Compare: Ricci flow of metrics; mean curvature flow of immersions.)

- General study of flows of G₂ structures Karigiannis, Q.J.M '09 D.-Gianniotis-Karigiannis, '23
- Laplacian flow of closed G₂ structures Bryant, '05, Bryant–Xu, '11 $\left(\frac{\partial \varphi}{\partial t} = \Delta_{\varphi} \varphi, \quad d\varphi = 0\right)$ Lotay–Wei, GAFA, CAG, JDG '15
- Laplacian co-flow of co-closed G₂ structures Karigiannis–McKay–Tsui, $(\frac{\partial \psi}{\partial t} = -\Delta_{\varphi}\psi, \quad d\psi = 0)$ DGA'12
- Modified Laplacian co-flow of co-closed G₂ structures Grigorian, Adv.Math'13

• Isometric Flow of G₂-structures- D.-Gianniotis-Karigiannis, '19, independently by Grigorian, '19 \rightsquigarrow using the theory of Octonionic bundles and by Loubeau-Sá Earp, '19 \rightsquigarrow harmonic flow of geometric structures.

Recall that on (M, φ) , any 3-form can be described by a pair $(h, X), h \in S^2(TM), X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Recall that on (M, φ) , any 3-form can be described by a pair $(h, X), h \in S^2(TM), X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

Recall that on (M, φ) , any 3-form can be described by a pair $(h, X), h \in S^2(TM), X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

Recall that on (M, φ) , any 3-form can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

One possible approach to write the most general (and reasonable) flow of G_2 -structures is to classify all linearly independent second order differential invariants of a G_2 -structure (upto lower order terms) and then take a linear combination of those which can be made into a 3-form.

Recall that on (M, φ) , any 3-form can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial\varphi(t)}{\partial t} = (h(t)\diamond_t\varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

One possible approach to write the most general (and reasonable) flow of G_2 -structures is to classify all linearly independent second order differential invariants of a G_2 -structure (upto lower order terms) and then take a linear combination of those which can be made into a 3-form.

We use representation theoretic aspects of the Lie group G_2 to decompose the Riemann curvature tensor Rm and ∇T .

Recall that on (M, φ) , any 3-form can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

One possible approach to write the most general (and reasonable) flow of G_2 -structures is to classify all linearly independent second order differential invariants of a G_2 -structure (upto lower order terms) and then take a linear combination of those which can be made into a 3-form.

We use representation theoretic aspects of the Lie group G_2 to decompose the Riemann curvature tensor Rm and ∇T .

Definition

On $(M, \varphi) \exists$ another Ricci-type tensor F given explicitly as $F_{jk} = R_{abcd} \varphi^{ab}_{\ j} \varphi^{cd}_{\ k} = R_{cdab} \varphi^{ab}_{\ j} \varphi^{cd}_{\ k} = F_{kj}.$ tr(F) = -2R, R =scalar curvature. F has another geometric interpretation.

2nd order differential invariants of φ from Rm

The curvature decomposition is $\mathrm{S}^2(\Lambda^2)=\mathrm{S}^2(\textbf{7}\oplus\textbf{14})=\mathrm{S}^2(\textbf{7})\oplus(\textbf{7}\otimes\textbf{14})\oplus\mathrm{S}^2(\textbf{14})$ which can be further decomposed into irreducible G2-representations as

 $(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27).$

2nd order differential invariants of φ from Rm

The curvature decomposition is $\mathrm{S}^2(\Lambda^2) = \mathrm{S}^2(\mathbf{7}\oplus\mathbf{14}) = \mathrm{S}^2(\mathbf{7})\oplus(\mathbf{7}\otimes\mathbf{14})\oplus\mathrm{S}^2(\mathbf{14})$ which can be further decomposed into irreducible G₂-representations as

 $(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27).$

However, it must be orthogonal to $\Lambda^4=1\oplus 7\oplus 27$ by the first Bianchi identity. This cuts down the curvature to an element of

That is, the Bianchi identity says that the 7 part is zero, that the two 1's are multiples of each other, and that the three 27's reduce to just two independent 27's. Only the 1 and the two 27 components can be made into a 3-form.

2nd order differential invariants of φ from Rm

The curvature decomposition is $S^2(\Lambda^2) = S^2(7 \oplus 14) = S^2(7) \oplus (7 \otimes 14) \oplus S^2(14)$ which can be further decomposed into irreducible G₂-representations as

 $(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27).$

However, it must be orthogonal to $\Lambda^4=1\oplus 7\oplus 27$ by the first Bianchi identity. This cuts down the curvature to an element of

That is, the Bianchi identity says that the 7 part is zero, that the two 1's are multiples of each other, and that the three 27's reduce to just two independent 27's. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a flow of G_2 -structures are: Rg, Ric₀ and W_{27} .

2nd order differential invariants of φ from Rm

The curvature decomposition is $S^2(\Lambda^2) = S^2(7 \oplus 14) = S^2(7) \oplus (7 \otimes 14) \oplus S^2(14)$ which can be further decomposed into irreducible G₂-representations as

 $(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27).$

However, it must be orthogonal to $\Lambda^4=1\oplus 7\oplus 27$ by the first Bianchi identity. This cuts down the curvature to an element of

That is, the Bianchi identity says that the 7 part is zero, that the two 1's are multiples of each other, and that the three 27's reduce to just two independent 27's. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a flow of G_2 -structures are: Rg, Ric₀ and W_{27} . Since

$$W_{27} = \frac{3}{92}F + \frac{3}{2 \cdot 115}Rg - \frac{3}{115}$$
 Ric₀

we'll use Rg, Ric₀ and F.

• In a similar way we can decompose $\nabla T \in \Gamma(T^*M \otimes T^2)$ into irreducible G_2 -representations and look for those 2nd order differential invariants which can be made into a 3-form.

• In a similar way we can decompose $\nabla T \in \Gamma(T^*M \otimes T^2)$ into irreducible G_2 -representations and look for those 2nd order differential invariants which can be made into a 3-form.

• However, not all invariants obtained from Rm and ∇T are independent because these quantities are related by the G₂-Bianchi identity.

• In a similar way we can decompose $\nabla T \in \Gamma(T^*M \otimes T^2)$ into irreducible G_2 -representations and look for those 2nd order differential invariants which can be made into a 3-form.

• However, not all invariants obtained from Rm and ∇T are independent because these quantities are related by the G₂-Bianchi identity.

The G2-Bianchi identity is

$$G_{qij} =
abla_i T_{jq} -
abla_j T_{iq} - T_{ia} T_{jb} arphi^{ab}_{\ q} - rac{1}{2} R_{ijab} arphi^{ab}_{\ q}$$

 G_{qij} are the components of a tensor $G \in \Gamma(T^*M \otimes \Lambda^2(T^*M))$, because G_{qij} is skew in $i, j \rightarrow$ decomposed into two components $G^7 + G^{14}$, where $G^k \in \Gamma(T^*M \otimes \Lambda^2_k(T^*M))$ for k = 7, 14. Using the decompositions

 $7 \otimes 7 = 1 \oplus 27 \oplus 7 \oplus 14$ and $7 \otimes 14 = 64 \oplus 27 \oplus 7$,

we can therefore decompose G = 0 into seven independent relations.

Doing all these, we prove the following lemma.

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants which can be made into a 3-form. The choices are

 $h = Ric_0, Rg, F, \mathcal{L}_{VT}g$ and $X = \operatorname{div} T, \operatorname{div} T^t$.

Note that $\mathcal{V}T = \frac{1}{6}(T_7) \lrcorner \varphi$ and $(\operatorname{div} T)_k = \nabla^i T_{ik}$, $(\operatorname{div} T^t)_k = \nabla^i T_k^i$ are vector fields on M.

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants which can be made into a 3-form. The choices are

 $h = Ric_0, Rg, F, \mathcal{L}_{\mathcal{V}T}g$ and $X = \operatorname{div} T, \operatorname{div} T^t$.

Note that $\mathcal{V}T = \frac{1}{6}(T_7) \lrcorner \varphi$ and $(\operatorname{div} T)_k = \nabla^i T_{ik}$, $(\operatorname{div} T^t)_k = \nabla^i T_k^i$ are vector fields on M.

These *h*'s and *X*'s appear in the first variation of the *L*²-norm of the torsion components, i.e, in $\frac{d}{dt}\Big|_{t=0} \int_{M} |T_i|^2 \operatorname{vol}$, i = 1, 7, 14, 27. The formulas are:

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants which can be made into a 3-form. The choices are

 $h = Ric_0, Rg, F, \mathcal{L}_{VT}g$ and $X = \operatorname{div} T, \operatorname{div} T^t$.

Note that $\mathcal{V}T = \frac{1}{6}(T_7) \lrcorner \varphi$ and $(\operatorname{div} T)_k = \nabla^i T_{ik}$, $(\operatorname{div} T^t)_k = \nabla^i T_k^i$ are vector fields on M.

These *h*'s and *X*'s appear in the first variation of the *L*²-norm of the torsion components, i.e, in $\frac{d}{dt}\Big|_{t=0} \int_{M} |T_i|^2 \operatorname{vol}$, i = 1, 7, 14, 27. The formulas are:

$$\begin{aligned} \frac{d}{dt} \int_{M} |T_1|^2 \operatorname{Vol} &= \int_{M} h^{ip} ((\operatorname{tr} T)^2 g_{ip} - 2 \operatorname{tr} T T_{ip}) \operatorname{Vol} \\ &- 2 \int_{M} X^p (\operatorname{tr} T(\mathcal{V}T)_p + (\operatorname{div} T^t)_p) \operatorname{Vol} \end{aligned}$$

$$\begin{aligned} \frac{d}{dt} \int_{M} |T_{7}|^{2} \operatorname{Vol} &= \int_{M} 6h^{ip} \Big[(\mathcal{L}_{\mathcal{V}\mathcal{T}g})_{ip} + Rg_{ip} + \operatorname{tr}(T^{2})g_{ip} - (\operatorname{tr} T)^{2}g_{ip} + T_{la}T_{jq}\psi^{lajq}g_{ip} \\ &- |\mathcal{V}T|^{2}g_{ip} - 4(T_{\mathrm{skew}})_{is}T_{p}^{s} - 2T_{mn}T_{is}\psi^{mns}_{p} \Big] \operatorname{Vol} \\ &+ \int_{M} 6X^{q} \Big[-2(\operatorname{div} T)_{q} + 2(\operatorname{div} T^{t})_{q} + 2\nabla_{p}T_{mn}\psi^{pmn}_{q} \\ &+ 4(T_{\mathrm{skew}})_{pq}\mathcal{V}T^{p} + 2(T^{2})_{pn}\varphi^{pn}_{q} \Big] \operatorname{Vol} \end{aligned}$$

$$\begin{aligned} \frac{d}{dt} \int_{M} |T_{14}|^{2} \operatorname{Vol} &= \int_{M} h^{ip} \Big[R_{ip} - \frac{11}{2} (\mathcal{L}_{\mathcal{V}\mathcal{T}g})_{ip} - \frac{1}{4}F_{ip} - 6Rg_{ip} + 2(T^{2})_{pi} - (T \circ T^{t})_{ip} \\ &- \operatorname{tr} TT_{pi} - \frac{1}{2}T_{ms}T_{nt}\varphi^{mn}_{i}\varphi^{st}_{p} - 2T_{km}(T_{\mathrm{skew}})_{pq}\psi^{kmq}_{i} \\ &+ 12T_{mn}T_{is}\psi^{mns}_{p} + 24(T_{\mathrm{skew}})_{is}T_{p}^{s} + \frac{1}{2}|T|^{2}g_{ip} - \frac{13}{2}\operatorname{tr}(T^{2})g_{ip} \\ &+ 6(\operatorname{tr} T)^{2}g_{ip} + 6|\mathcal{V}T|^{2}g_{ip} - 6T_{la}T_{jq}\psi^{lpjq}g_{ip} \Big] \operatorname{Vol} \end{aligned}$$

$$\begin{aligned} \frac{d}{dt} \int_{M} |T_{27}|^{2} \operatorname{Vol} &= \int_{M} h^{ip} \Big[R_{ip} + \frac{1}{2} (\mathcal{L}_{\mathcal{VT}} g)_{ip} + \frac{1}{4} F_{ip} + \frac{1}{2} T_{ms} T_{nt} \varphi^{mn}_{\ i} \varphi^{st}_{\ p} - \frac{5}{7} \operatorname{tr} T T_{pi} \\ &- 2 T_{km} (T_{sym})_{pq} \psi^{kmq}_{\ i} - (T \circ T^{t})_{ip} + \frac{1}{2} |T|^{2} g_{ip} + \frac{1}{2} \operatorname{tr} (T^{2}) g_{ip} \\ &- \frac{1}{7} (\operatorname{tr} T)^{2} g_{ip} \Big] \operatorname{Vol} \\ &- \int_{M} X^{q} \Big[(\operatorname{div} T)_{q} + \frac{9}{7} (\operatorname{div} T^{t})_{q} + T_{pl}^{2} \varphi^{pl}_{\ q} + \frac{2}{7} \operatorname{tr} T (\mathcal{V}T)_{q} \\ &+ \frac{2}{7} (\mathcal{V}T)^{p} T_{qp} \Big] \operatorname{Vol}. \end{aligned}$$

$$\begin{aligned} \frac{d}{dt} \int_{M} |T_{27}|^{2} \operatorname{Vol} &= \int_{M} h^{ip} \Big[R_{ip} + \frac{1}{2} (\mathcal{L}_{\mathcal{VT}} g)_{ip} + \frac{1}{4} F_{ip} + \frac{1}{2} T_{ms} T_{nt} \varphi^{mn}_{\ i} \varphi^{st}_{\ p} - \frac{5}{7} \operatorname{tr} T T_{pi} \\ &- 2 T_{km} (T_{sym})_{pq} \psi^{kmq}_{\ i} - (T \circ T^{t})_{ip} + \frac{1}{2} |T|^{2} g_{ip} + \frac{1}{2} \operatorname{tr} (T^{2}) g_{ip} \\ &- \frac{1}{7} (\operatorname{tr} T)^{2} g_{ip} \Big] \operatorname{Vol} \\ &- \int_{M} X^{q} \Big[(\operatorname{div} T)_{q} + \frac{9}{7} (\operatorname{div} T^{t})_{q} + T_{pl}^{2} \varphi^{pl}_{\ q} + \frac{2}{7} \operatorname{tr} T (\mathcal{V}T)_{q} \\ &+ \frac{2}{7} (\mathcal{V}T)^{p} T_{qp} \Big] \operatorname{Vol}. \end{aligned}$$

Thus, we are led to define the following family of flows of G_2 -structures.

[Flows of G₂-structures]

Let (M^7,φ_0) be a compact manifold. The general flow of $G_2\mbox{-structures}$ is the initial value problem

$$\begin{aligned} \frac{\partial \varphi}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{V}T}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \text{l.o.t.} \end{aligned} (GGF) \\ \varphi(0) &= \varphi_0 \end{aligned}$$
with $a, \beta, b_1, b_2 \in \mathbb{R}$.

Remark: We do not put any condition on φ (like $d\varphi = 0, d * \varphi = 0$ or isometric).

[Flows of G2-structures]

Let (M^7, φ_0) be a compact manifold. The general flow of G₂-structures is the initial value problem

$$\begin{aligned} \frac{\partial \varphi}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{V}T}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.} \end{aligned} (GGF) \\ \varphi(0) &= \varphi_0 \\ \text{with } a, \beta, b_1, b_2 \in \mathbb{R}. \end{aligned}$$

Remark: We do not put any condition on φ (like $d\varphi = 0, d * \varphi = 0$ or isometric).

Special cases

• $a = \beta = b_1 = b_2 = 0$ gives the usual **Ricci flow of** G₂-structures. The analytic properties of this flow is well-understood, in particular, we have short-time existence and uniqueness, *a priori* estimates and a compactness theorem for solutions.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{VT}}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \mathrm{l.o.t.}$$

• $a = \beta = b_2 = 0$, $b_1 = 1$ and no Ric term gives the isometric/harmonic flow of G₂-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_M |\mathcal{T}|^2 \text{ Vol}$ restricted to $[[\varphi_0]]_{iso}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{VT}}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \text{l.o.t.}$$

- $a = \beta = b_2 = 0$, $b_1 = 1$ and no Ric term gives the isometric/harmonic flow of G₂-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_M |T|^2$ Vol restricted to $[[\varphi_0]]_{iso}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.
- $a = \beta = b_2 = 0$ gives the Ricci flow coupled with the isometric flow of G₂-structures. We prove short-time existence and uniqueness of solutions and *a priori* estimates.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{V}T}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.}$$

- $a = \beta = b_2 = 0$, $b_1 = 1$ and no Ric term gives the isometric/harmonic flow of G₂-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_M |T|^2$ Vol restricted to $[[\varphi_0]]_{iso}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.
- $a = \beta = b_2 = 0$ gives the Ricci flow coupled with the isometric flow of G₂-structures. We prove short-time existence and uniqueness of solutions and *a priori* estimates.

•
$$a = -\frac{1}{2}$$
, $\beta = 0$, $b_1 = 1$, $b_2 = 0$ so we have
 $\partial_t \varphi = (-\operatorname{Ric} -\frac{1}{2}\mathcal{L}_{\mathcal{VT}}g) \diamond \varphi + \operatorname{div} T \lrcorner \psi + \operatorname{l.o.t.} \rightsquigarrow$ negative gradient flow
of $\varphi \mapsto \int_M |T|^2$ Vol on *all* G₂-structures. Studied by Weiss-Witt (2012).
We have short-time existence and uniqueness of solutions.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{V}T}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.}$$

- $a = \beta = b_2 = 0$, $b_1 = 1$ and no Ric term gives the isometric/harmonic flow of G₂-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_M |\mathcal{T}|^2 \text{ Vol}$ restricted to $[[\varphi_0]]_{iso}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.
- $a = \beta = b_2 = 0$ gives the Ricci flow coupled with the isometric flow of G₂-structures. We prove short-time existence and uniqueness of solutions and *a priori* estimates.

•
$$a = -\frac{1}{2}, \ \beta = 0, \ b_1 = 1, \ b_2 = 0$$
 so we have
 $\partial_t \varphi = (-\operatorname{Ric} -\frac{1}{2}\mathcal{L}_{\mathcal{VT}}g) \diamond \varphi + \operatorname{div} T \lrcorner \psi + \operatorname{l.o.t.} \rightsquigarrow \text{negative gradient flow}$
of $\varphi \mapsto \int_M |T|^2$ Vol on all G₂-structures. Studied by Weiss-Witt (2012).
We have short-time existence and uniqueness of solutions.

What can we say about the short-time existence and uniqueness of solutions of (GGF) in general?

Theorem (D.-Gianniotis-Karigiannis, '23)

Let (M, φ_0) be a compact 7-manifold with a G_2 -structure φ_0 . Then there exists a unique $\varphi(t)$, $t \in [0, \varepsilon)$, such that

$$\frac{\partial \varphi(t)}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{VT}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi$$
$$\varphi(0) = \varphi_0,$$

provided that $0 \le b_1 - a - 1 < 4$, $b_1 + b_2 \ge 1$ and $|\beta| < \frac{c}{4}$, where $c = 1 - \frac{1}{4}(b_1 - a - 1)$.

Theorem (D.–Gianniotis–Karigiannis, '23)

Let (M, φ_0) be a compact 7-manifold with a G_2 -structure φ_0 . Then there exists a unique $\varphi(t)$, $t \in [0, \varepsilon)$, such that

$$\begin{split} \frac{\partial \varphi(t)}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{\mathcal{VT}}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi \\ \varphi(0) &= \varphi_0, \end{split}$$
provided that $0 \leq b_1 - a - 1 < 4$, $b_1 + b_2 \geq 1$ and $|\beta| < \frac{c}{4}$, where $c = 1 - \frac{1}{4}(b_1 - a - 1).$

Idea of the proof:

С

• Let the RHS of (GGF) be P_{ω} . Calculate the principal symbols of the operators involved: Ric, $\mathcal{L}_{\mathcal{V}T}g$, F, div T, div T^t. It turns out that dim ker $(\sigma(DP_{\varphi})(h, X)) \geq 7$ because of diffeomorphism invariance of the tensors involved.

Proof contd.

• We prove that dim ker $(\sigma(DP_{\varphi})(h, X)) = 7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_1: S^2(T_x^*M) \to T_x^*M$ with $B_1(h)_k = \xi_a h^a_k - \frac{1}{2}\xi_k$ tr h which is the usual *Bianchi operator* in the Ricci-flow. We introduce $B_2: T_x^*M \to T_x^*M$ by $B_2(X)_k = \xi_a X_b \varphi^{ab}_k$ and use both of these.

Proof contd.

• We prove that dim ker $(\sigma(DP_{\varphi})(h, X)) = 7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_1: S^2(T_x^*M) \to T_x^*M$ with $B_1(h)_k = \xi_a h^a_k - \frac{1}{2}\xi_k$ tr h which is the usual *Bianchi operator* in the Ricci-flow. We introduce $B_2: T_x^*M \to T_x^*M$ by $B_2(X)_k = \xi_a X_b \varphi^{ab}_k$ and use both of these.

• Because of above, we can use the DeTurck's trick: look at the modified operator $P_{\varphi} + \mathcal{L}_W \varphi$ with $W \in \Gamma(TM)$ given by

$$W^{k} = g^{ij} \left(\Gamma^{k}_{ij} - \overline{\Gamma}^{k}_{ij}
ight) - 2a \mathcal{V} T^{k}$$

where $\overline{\Gamma}$ are the Christoffel symbols w.r.t. a fixed background G₂-structure, e.g., φ_0 .

Proof contd.

• We prove that dim ker $(\sigma(DP_{\varphi})(h, X)) = 7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_1: S^2(T_x^*M) \to T_x^*M$ with $B_1(h)_k = \xi_a h^a_k - \frac{1}{2}\xi_k$ tr h which is the usual *Bianchi operator* in the Ricci-flow. We introduce $B_2: T_x^*M \to T_x^*M$ by $B_2(X)_k = \xi_a X_b \varphi^{ab}_k$ and use both of these.

• Because of above, we can use the DeTurck's trick: look at the modified operator $P_{\varphi} + \mathcal{L}_W \varphi$ with $W \in \Gamma(TM)$ given by

$$W^{k} = g^{ij} \left(\Gamma^{k}_{ij} - \bar{\Gamma}^{k}_{ij} \right) - 2a\mathcal{V}T^{k}$$

where $\overline{\Gamma}$ are the Christoffel symbols w.r.t. a fixed background G₂-structure, e.g., φ_0 .

• The symbol of $P_{\varphi} + \mathcal{L}_W \varphi$ is a multiple of Id and hence we can prove short-time existence and uniqueness using DeTurck's trick.

 \bullet One can ask the same questions for general flows of ${\rm Spin}(7)\text{-structures}$ on 8-manifolds. This has been done by D. '23 and is an upcoming work.

• Find the flow with the "nicest" evolution of the torsion. This will involve the lower order terms as well. We have a "heat-type" equation for T along the negative gradient flow of $\varphi \mapsto \int_M |T|^2$ Vol functional $(\beta = b_2 = 0, a = -\frac{1}{2}, b_1 = 1 \text{ case}).$

• A monotone quantity, just like the case of the isometric flow and if possible, an entropy functional, "smallness" of which guarantees long time existence.

• Examples of solutions and solitons.

• Dynamical stability of torsion-free G_2 -structures along the flows considered here (already done for the neg. grad. flow by Weiss–Witt (2012)).

• Applications of the flow to 3, 4 and 6 dimensions à la Fine-Yao, Lambert-Lotay and Picard-Suan.

Thank you for your attention.