Geometric flows of G_{2}-structures

Shubham Dwivedi
Humboldt-Universität zu Berlin
Workshop BRIDGES: Special geometries and gauge theories, University of Pau
June 19, 2023
based on a work in progress, joint work with
Panagiotis Gianniotis (University of Athens) \&
Spiro Karigiannis (University of Waterloo)

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds.

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds. A G_{2}-structure on M^{7} is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\operatorname{GL}(7, \mathbb{R})$ to the Lie group $\mathrm{G}_{2} \leq \mathrm{SO}(7)$.

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds. A G_{2}-structure on M^{7} is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\mathrm{GL}(7, \mathbb{R})$ to the Lie group $\mathrm{G}_{2} \leq \mathrm{SO}(7)$.

Definition

Let M^{7} be a smooth manifold. A G_{2} structure on M is a 3-form φ which is nondegenerate.

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds. A G_{2}-structure on M^{7} is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\mathrm{GL}(7, \mathbb{R})$ to the Lie group $\mathrm{G}_{2} \leq \mathrm{SO}(7)$.

Definition

Let M^{7} be a smooth manifold. A G_{2} structure on M is a 3 -form φ which is nondegenerate.

Given local coordinates x^{1}, \ldots, x^{7} on M, define

$$
\left.\left.B_{i j} d x^{1} \wedge \ldots \wedge d x^{7}=\left(\frac{\partial}{\partial x^{i}}\right\lrcorner \varphi\right) \wedge\left(\frac{\partial}{\partial x^{j}}\right\lrcorner \varphi\right) \wedge \varphi
$$

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds. A
G_{2}-structure on M^{7} is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\operatorname{GL}(7, \mathbb{R})$ to the Lie group $\mathrm{G}_{2} \leq \mathrm{SO}(7)$.

Definition

Let M^{7} be a smooth manifold. $A G_{2}$ structure on M is a 3 -form φ which is nondegenerate.

Given local coordinates x^{1}, \ldots, x^{7} on M, define

$$
\underbrace{B_{i j}}_{\text {symmetric }} d x^{1} \wedge \ldots \wedge d x^{7}=\left(\frac{\partial}{\partial x^{i}}\right\lrcorner \varphi) \wedge\left(\frac{\partial}{\partial x^{j}}\right\lrcorner \varphi) \wedge \varphi
$$

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds. A
G_{2}-structure on M^{7} is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\operatorname{GL}(7, \mathbb{R})$ to the Lie group $\mathrm{G}_{2} \leq \mathrm{SO}(7)$.

Definition

Let M^{7} be a smooth manifold. A G_{2} structure on M is a 3-form φ which is nondegenerate.

Given local coordinates x^{1}, \ldots, x^{7} on M, define

$$
\underbrace{B_{i j}}_{\text {symmetric }} d x^{1} \wedge \ldots \wedge d x^{7}=\left(\frac{\partial}{\partial x^{i}}\right\lrcorner \varphi) \wedge\left(\frac{\partial}{\partial x^{j}}\right\lrcorner \varphi) \wedge \varphi
$$

From this, define the symmetric bilinear form $g_{i j}$ by

$$
g_{i j}=-\frac{1}{6^{\frac{2}{9}}} \frac{B_{i j}}{\operatorname{det}(B)^{\frac{1}{9}}}
$$

Introduction to G_{2}-structures

Throughout this talk, we will be working on 7-dimensional manifolds. A
G_{2}-structure on M^{7} is the reduction of the structure group of the frame bundle $\operatorname{Fr}(M)$ from $\operatorname{GL}(7, \mathbb{R})$ to the Lie group $\mathrm{G}_{2} \leq \mathrm{SO}(7)$.

Definition

Let M^{7} be a smooth manifold. A G_{2} structure on M is a 3-form φ which is nondegenerate.

Given local coordinates x^{1}, \ldots, x^{7} on M, define

$$
\underbrace{B_{i j}}_{\text {symmetric }} d x^{1} \wedge \ldots \wedge d x^{7}=\left(\frac{\partial}{\partial x^{i}}\right\lrcorner \varphi) \wedge\left(\frac{\partial}{\partial x^{j}}\right\lrcorner \varphi) \wedge \varphi
$$

From this, define the symmetric bilinear form $g_{i j}$ by

$$
g_{i j}=-\frac{1}{6^{\frac{2}{9}}} \frac{B_{i j}}{\operatorname{det}(B)^{\frac{1}{9}}}
$$

φ is nondegenerate $\Longleftrightarrow g_{i j}$ is a Riemannian metric.

Introduction contd.

G_{2} structure $\rightsquigarrow \leadsto$ "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.
Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4 -form $*_{\varphi} \varphi=\psi$.

Introduction contd.

G_{2} structure $\rightsquigarrow>$ "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.
Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi} \varphi=\psi$.

Definition

Let $\left(M^{7}, \varphi\right)$ be a manifold with a G_{2} structure φ and let ∇ be the Levi-Civita connection of g_{φ}. We call (M, φ) a G_{2} manifold if $\nabla \varphi=0 . \nabla \varphi$ is interpreted as the torsion T of the G_{2} structure.

Introduction contd.

G_{2} structure $\rightsquigarrow>$ "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.
Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4 -form $*_{\varphi} \varphi=\psi$.

Definition

Let $\left(M^{7}, \varphi\right)$ be a manifold with a G_{2} structure φ and let ∇ be the Levi-Civita connection of g_{φ}. We call (M, φ) a G_{2} manifold if $\nabla \varphi=0 . \nabla \varphi$ is interpreted as the torsion T of the G_{2} structure.
G_{2} manifolds, i.e., those having torsion-free G_{2} structure φ are always Ricci-flat and have special holonomy contained in the Lie group $\mathrm{G}_{2} \subset \mathrm{SO}(7)$.

Introduction contd.

G_{2} structure $\rightsquigarrow>$ "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.
Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4 -form $*_{\varphi} \varphi=\psi$.

Definition

Let $\left(M^{7}, \varphi\right)$ be a manifold with a G_{2} structure φ and let ∇ be the Levi-Civita connection of g_{φ}. We call (M, φ) a G_{2} manifold if $\nabla \varphi=0 . \nabla \varphi$ is interpreted as the torsion T of the G_{2} structure.
G_{2} manifolds, i.e., those having torsion-free G_{2} structure φ are always Ricci-flat and have special holonomy contained in the Lie group $\mathrm{G}_{2} \subset \mathrm{SO}(7)$.

Aside: In 1955, Berger classified all possible Riemannian holonomies. The exceptional case G_{2} was believed to not exist until seminal works by Bryant, Salamon, and Joyce, from 1987 to 1996.

Introduction contd.

On $(M, \varphi), k$-forms decompose further according to the irreducible G_{2} representations.

Introduction contd.

On $(M, \varphi), k$-forms decompose further according to the irreducible G_{2} representations.

In particular,

$$
\Omega^{2}=\Omega_{7}^{2} \oplus \Omega_{14}^{2}, \quad \Omega^{3}=\Omega_{1}^{3} \oplus \Omega_{7}^{3} \oplus \Omega_{27}^{3} .
$$

$$
\begin{aligned}
\Omega_{7}^{2} & =\{X\lrcorner \varphi \mid X \in \Gamma(T M)\} \quad=\quad\left\{\beta \in \Omega^{2} \mid *(\varphi \wedge \beta)=-2 \beta\right\}, \\
\Omega_{14}^{2} & =\left\{\beta \in \Omega^{2} \mid *(\varphi \wedge \beta)=\beta\right\} \quad=\left\{\beta \in \Omega^{2} \mid \beta \wedge \psi=0\right\}
\end{aligned}
$$

Introduction contd.

On $(M, \varphi), k$-forms decompose further according to the irreducible G_{2} representations.

In particular,

$$
\Omega^{2}=\Omega_{7}^{2} \oplus \Omega_{14}^{2}, \quad \Omega^{3}=\Omega_{1}^{3} \oplus \Omega_{7}^{3} \oplus \Omega_{27}^{3}
$$

$$
\begin{gathered}
\left.\Omega_{7}^{2}=\{X\lrcorner \varphi \mid X \in \Gamma(T M)\right\}=\left\{\beta \in \Omega^{2} \mid *(\varphi \wedge \beta)=-2 \beta\right\} \\
\Omega_{14}^{2}=\left\{\beta \in \Omega^{2} \mid *(\varphi \wedge \beta)=\beta\right\} \quad=\left\{\beta \in \Omega^{2} \mid \beta \wedge \psi=0\right\}
\end{gathered}
$$

For $\sigma \in \Omega^{k}$ and $A=A_{i j} d x^{i} \otimes d x^{j} \in \mathcal{T}^{2}$, we define

$$
(A \diamond \sigma)_{i_{1} i_{2} \cdots i_{k}}=A_{i_{1}}^{p} \sigma_{p i_{2} \cdots i_{k}}+A_{i_{2}}^{p} \sigma_{i_{1} p i_{3} \cdots i_{k}}+\cdots+A_{i_{k}}^{p} \sigma_{i_{1} i_{2} \cdots i_{k-1} p}
$$

in particular $(A \diamond \varphi)_{i j k}=A_{i}^{p} \varphi_{p j k}+A_{j}^{p} \varphi_{i p k}+A_{k}^{p} \varphi_{i j p}$.
Since $\mathcal{T}^{2} \cong \Omega^{0} \oplus S_{0}^{2} \oplus \Omega_{7}^{2} \oplus \Omega_{14}^{2}$, it can be proved that

$$
A \in \operatorname{ker}(\cdot \diamond \varphi) \Longleftrightarrow A \in \Omega_{14}^{2}
$$

$A \mapsto A \diamond \varphi$ is an isomorphism between $S^{2} \oplus \Omega_{7}^{2}$ and Ω^{3}

Introduction contd.

Thus, we can describe the 3 -forms as

$$
\begin{gathered}
\left.\Omega_{1}^{3}=\left\{f \varphi \mid f \in \Omega^{0}\right\}, \quad \Omega_{7}^{3}=\left\{A \diamond \varphi \mid A \in \Omega_{7}^{2}\right\}=\{X\lrcorner \psi \mid X \in \Gamma(T M)\right\}, \\
\Omega_{27}^{3}=\left\{A \diamond \varphi \mid A \in S_{0}^{2}\right\}
\end{gathered}
$$

Introduction contd.

Thus, we can describe the 3 -forms as

$$
\begin{gathered}
\left.\Omega_{1}^{3}=\left\{f \varphi \mid f \in \Omega^{0}\right\}, \quad \Omega_{7}^{3}=\left\{A \diamond \varphi \mid A \in \Omega_{7}^{2}\right\}=\{X\lrcorner \psi \mid X \in \Gamma(T M)\right\}, \\
\Omega_{27}^{3}=\left\{A \diamond \varphi \mid A \in S_{0}^{2}\right\}
\end{gathered}
$$

For $A \in \mathcal{T}^{2}$, we set

$$
(\mathcal{V} A)_{k}=A_{i j} \varphi^{i j}{ }_{k} .
$$

Only the Ω_{7}^{2} part of A contributes to $\mathcal{V} A$, and we call it the vector part of A. In fact,

$$
\left.A_{7}=\frac{1}{6}(\mathcal{V} A)\right\lrcorner \varphi .
$$

Introduction contd.

Thus, we can describe the 3 -forms as

$$
\begin{gathered}
\left.\Omega_{1}^{3}=\left\{f \varphi \mid f \in \Omega^{0}\right\}, \quad \Omega_{7}^{3}=\left\{A \diamond \varphi \mid A \in \Omega_{7}^{2}\right\}=\{X\lrcorner \psi \mid X \in \Gamma(T M)\right\}, \\
\Omega_{27}^{3}=\left\{A \diamond \varphi \mid A \in S_{0}^{2}\right\}
\end{gathered}
$$

For $A \in \mathcal{T}^{2}$, we set

$$
(\mathcal{V} A)_{k}=A_{i j} \varphi^{i j}{ }_{k} .
$$

Only the Ω_{7}^{2} part of A contributes to $\mathcal{V} A$, and we call it the vector part of A. In fact,

$$
\left.A_{7}=\frac{1}{6}(\mathcal{V} A)\right\lrcorner \varphi .
$$

Thus on (M, φ), any 3-form can be equivalently described by a pair (h, X) with h a symmetric 2 -tensor and $X \in \Gamma(T M)$. We will write

$$
\gamma=(h \diamond \varphi)+X\lrcorner \psi .
$$

for a 3 -form γ.

Torsion of a G_{2}-structure

- The torsion T is a 2-tensor and is explicitly given as

$$
T_{p q}=\frac{1}{24} \nabla_{p} \varphi_{i j k} \psi_{q}^{i j k} \quad\left(\psi=*_{\varphi} \varphi\right)
$$

Torsion of a G_{2}-structure

- The torsion T is a 2-tensor and is explicitly given as

$$
T_{p q}=\frac{1}{24} \nabla_{p} \varphi_{i j k} \psi_{q}^{i j k} \quad\left(\psi=*_{\varphi} \varphi\right)
$$

Since $T \in \mathcal{T}^{2}$, it can be further decomposed as $T=T_{1}+T_{7}+T_{14}+T_{27}$.

Torsion of a G_{2}-structure

- The torsion T is a 2-tensor and is explicitly given as

$$
T_{p q}=\frac{1}{24} \nabla_{p} \varphi_{i j k} \psi_{q}^{i j k} \quad\left(\psi=*_{\varphi} \varphi\right)
$$

Since $T \in \mathcal{T}^{2}$, it can be further decomposed as $T=T_{1}+T_{7}+T_{14}+T_{27}$.

- T satisfies a "Bianchi"-type identity

$$
\nabla_{i} T_{j k}-\nabla_{j} T_{i k}=T_{i a} T_{j b} \varphi_{a}^{b k}+\frac{1}{2} R_{i j a b} \varphi_{k}^{a b}
$$

We expect this as $\phi^{*}\left(T_{\varphi}\right)=T_{\phi^{*} \varphi}$ for any diffeo. ϕ. We crucially use this for some of our results.

Torsion of a G_{2}-structure

- The torsion T is a 2-tensor and is explicitly given as

$$
T_{p q}=\frac{1}{24} \nabla_{p} \varphi_{i j k} \psi_{q}^{i j k} \quad\left(\psi=*_{\varphi} \varphi\right)
$$

Since $T \in \mathcal{T}^{2}$, it can be further decomposed as $T=T_{1}+T_{7}+T_{14}+T_{27}$.

- T satisfies a "Bianchi"-type identity

$$
\nabla_{i} T_{j k}-\nabla_{j} T_{i k}=T_{i a} T_{j b} \varphi_{a}^{b k}+\frac{1}{2} R_{i j a b} \varphi_{k}^{a b}
$$

We expect this as $\phi^{*}\left(T_{\varphi}\right)=T_{\phi^{*} \varphi}$ for any diffeo. ϕ. We crucially use this for some of our results.

Theorem (Fernàndez-Gray)

(M, φ) is torsion-free, i.e., $T=0(\Longleftrightarrow \nabla \varphi=0)$ if and only if $d \varphi=d \psi=0$.

Flows of G_{2} structures

Suppose $\left(M^{\top}, \varphi\right)$ is a compact manifold with a G_{2} structure.

Flows of G_{2} structures

Suppose $\left(M^{7}, \varphi\right)$ is a compact manifold with a G_{2} structure.

Ques. What is the "best" G_{2} structure amongst all G_{2} structures on M ?

Flows of G_{2} structures

Suppose $\left(M^{\top}, \varphi\right)$ is a compact manifold with a G_{2} structure.
Ques. What is the "best" G_{2} structure amongst all G_{2} structures on M ?
(Reasonable) Ans. Torsion free G_{2} structures.

Flows of G_{2} structures

Suppose $\left(M^{7}, \varphi\right)$ is a compact manifold with a G_{2} structure.
Ques. What is the "best" G_{2} structure amongst all G_{2} structures on M ?
(Reasonable) Ans. Torsion free G_{2} structures.
A geometric flow is an evolution equation which improves a geometric structure, starting from a given one.

Flows of G_{2} structures

Suppose $\left(M^{7}, \varphi\right)$ is a compact manifold with a G_{2} structure.
Ques. What is the "best" G_{2} structure amongst all G_{2} structures on M ?
(Reasonable) Ans. Torsion free G_{2} structures.

A geometric flow is an evolution equation which improves a geometric structure, starting from a given one.

Given a G_{2} structure (not necessarily torsion-free), it is natural to attempt to improve it in some sense to a "better" G_{2} structure by using a geometric flow. (Compare: Ricci flow of metrics; mean curvature flow of immersions.)

Flows of G_{2} structures...a brief history

- General study of flows of G_{2} structures - Karigiannis, Q.J.M '09 D.-Gianniotis-Karigiannis, '23
- Laplacian flow of closed G_{2} structures - Bryant, '05, Bryant-Xu, '11

$$
\left(\frac{\partial \varphi}{\partial t}=\Delta_{\varphi} \varphi, \quad d \varphi=0\right) \quad \text { Lotay-Wei, GAFA, CAG, JDG '15 }
$$

- Laplacian co-flow of co-closed G_{2} structures - Karigiannis-McKay-Tsui, $\left(\frac{\partial \psi}{\partial t}=-\Delta_{\varphi} \psi, \quad d \psi=0\right) \quad D^{\prime} A^{\prime} 12$
- Modified Laplacian co-flow of co-closed G_{2} structures - Grigorian, Adv.Math'13
- Isometric Flow of G_{2}-structures- D.-Gianniotis-Karigiannis, '19, independently by Grigorian, '19 using the theory of Octonionic bundles and by Loubeau-Sá Earp, '19 harmonic flow of geometric structures.

Flows of G_{2} structures

Recall that on (M, φ), any 3 -form can be described by a pair $(h, X), h \in S^{2}(T M), X \in \Gamma(T M)$. Thus, any flow of G_{2}-structures can be written as

$$
\begin{equation*}
\left.\frac{\partial \varphi(t)}{\partial t}=\left(h(t) \diamond_{t} \varphi(t)\right)+X(t)\right\lrcorner \psi(t) . \tag{GF}
\end{equation*}
$$

Flows of G_{2} structures

Recall that on (M, φ), any 3-form can be described by a pair $(h, X), h \in S^{2}(T M), X \in \Gamma(T M)$. Thus, any flow of G_{2}-structures can be written as

$$
\begin{equation*}
\left.\frac{\partial \varphi(t)}{\partial t}=\left(h(t) \diamond_{t} \varphi(t)\right)+X(t)\right\lrcorner \psi(t) \tag{GF}
\end{equation*}
$$

Facts: Along (GF), $\partial_{t} g(t)=2 h(t), \partial_{t} g(t)^{-1}=-2 h(t), \partial_{t}$ vol $_{t}=\operatorname{tr} h(t)$ vol $_{t}$.

Flows of G_{2} structures

Recall that on (M, φ), any 3-form can be described by a pair $(h, X), h \in S^{2}(T M), X \in \Gamma(T M)$. Thus, any flow of G_{2}-structures can be written as

$$
\begin{equation*}
\left.\frac{\partial \varphi(t)}{\partial t}=\left(h(t) \diamond_{t} \varphi(t)\right)+X(t)\right\lrcorner \psi(t) \tag{GF}
\end{equation*}
$$

Facts: Along (GF), $\partial_{t} g(t)=2 h(t), \partial_{t} g(t)^{-1}=-2 h(t), \partial_{t}$ vol $_{t}=\operatorname{tr} h(t)$ vol $_{t}$.

Flows of G_{2} structures

Recall that on (M, φ), any 3-form can be described by a pair $(h, X), h \in S^{2}(T M), X \in \Gamma(T M)$. Thus, any flow of G_{2}-structures can be written as

$$
\begin{equation*}
\left.\frac{\partial \varphi(t)}{\partial t}=\left(h(t) \diamond_{t} \varphi(t)\right)+X(t)\right\lrcorner \psi(t) \tag{GF}
\end{equation*}
$$

Facts: Along (GF), $\partial_{t} g(t)=2 h(t), \partial_{t} g(t)^{-1}=-2 h(t), \partial_{t}$ vol $_{t}=\operatorname{tr} h(t)$ vol $_{t}$.
One possible approach to write the most general (and reasonable) flow of G_{2}-structures is to classify all linearly independent second order differential invariants of a G_{2}-structure (upto lower order terms) and then take a linear combination of those which can be made into a 3-form.

Flows of G_{2} structures

Recall that on (M, φ), any 3-form can be described by a pair $(h, X), h \in S^{2}(T M), X \in \Gamma(T M)$. Thus, any flow of G_{2}-structures can be written as

$$
\begin{equation*}
\left.\frac{\partial \varphi(t)}{\partial t}=\left(h(t) \diamond_{t} \varphi(t)\right)+X(t)\right\lrcorner \psi(t) \tag{GF}
\end{equation*}
$$

Facts: Along (GF), $\partial_{t} g(t)=2 h(t), \partial_{t} g(t)^{-1}=-2 h(t), \partial_{t}$ vol $_{t}=\operatorname{tr} h(t)$ vol $_{t}$.
One possible approach to write the most general (and reasonable) flow of G_{2}-structures is to classify all linearly independent second order differential invariants of a G_{2}-structure (upto lower order terms) and then take a linear combination of those which can be made into a 3-form.

We use representation theoretic aspects of the Lie group G_{2} to decompose the Riemann curvature tensor Rm and ∇T.

Flows of G_{2} structures

Recall that on (M, φ), any 3-form can be described by a pair $(h, X), h \in S^{2}(T M), X \in \Gamma(T M)$. Thus, any flow of G_{2}-structures can be written as

$$
\begin{equation*}
\left.\frac{\partial \varphi(t)}{\partial t}=\left(h(t) \diamond_{t} \varphi(t)\right)+X(t)\right\lrcorner \psi(t) \tag{GF}
\end{equation*}
$$

Facts: Along (GF), $\partial_{t} g(t)=2 h(t), \partial_{t} g(t)^{-1}=-2 h(t), \partial_{t}$ vol $_{t}=\operatorname{tr} h(t)$ vol $_{t}$.
One possible approach to write the most general (and reasonable) flow of G_{2}-structures is to classify all linearly independent second order differential invariants of a G_{2}-structure (upto lower order terms) and then take a linear combination of those which can be made into a 3-form.

We use representation theoretic aspects of the Lie group G_{2} to decompose the Riemann curvature tensor Rm and ∇T.

Definition

On $(M, \varphi) \exists$ another Ricci-type tensor F given explicitly as

$$
F_{j k}=R_{a b c d} \varphi_{j}^{a b} \varphi_{k}^{c d} \underbrace{=}_{\text {symm.of } \mathrm{Rm}} R_{c d a b} \varphi_{j}^{a b} \varphi_{k}^{c d}=F_{k j} .
$$

$\operatorname{tr}(F)=-2 R, R=$ scalar curvature. F has another geometric interpretation.

2nd order differential invariants of φ from Rm

The curvature decomposition is
$S^{2}\left(\Lambda^{2}\right)=S^{2}(\mathbf{7} \oplus 14)=S^{2}(7) \oplus(\mathbf{7} \otimes 14) \oplus S^{2}(14)$ which can be further decomposed into irreducible G_{2}-representations as

$$
(\mathbf{1} \oplus \mathbf{2 7}) \oplus(\mathbf{6 4} \oplus \mathbf{7} \oplus \mathbf{2 7}) \oplus(\mathbf{7 7} \oplus \mathbf{1} \oplus \mathbf{2 7})
$$

2nd order differential invariants of φ from Rm

The curvature decomposition is
$S^{2}\left(\Lambda^{2}\right)=S^{2}(\mathbf{7} \oplus \mathbf{1 4})=S^{2}(\mathbf{7}) \oplus(\mathbf{7} \otimes 14) \oplus S^{2}(14)$ which can be further decomposed into irreducible G_{2}-representations as

$$
(\mathbf{1} \oplus \mathbf{2 7}) \oplus(\mathbf{6 4} \oplus \mathbf{7} \oplus \mathbf{2 7}) \oplus(\mathbf{7 7} \oplus \mathbf{1} \oplus \mathbf{2 7})
$$

However, it must be orthogonal to $\Lambda^{4}=\mathbf{1} \oplus \mathbf{7} \oplus \mathbf{2 7}$ by the first Bianchi identity. This cuts down the curvature to an element of

$$
\underbrace{\mathbf{1} \oplus \mathbf{2 7}}_{\text {Ricci }} \oplus \underbrace{\mathbf{2 7} \oplus \mathbf{6 4} \oplus \mathbf{7 7}}_{\text {Weyl }} .
$$

That is, the Bianchi identity says that the 7 part is zero, that the two 1 's are multiples of each other, and that the three 27 's reduce to just two independent 27 's. Only the 1 and the two 27 components can be made into a 3-form.

2nd order differential invariants of φ from Rm

The curvature decomposition is
$S^{2}\left(\Lambda^{2}\right)=S^{2}(\mathbf{7} \oplus \mathbf{1 4})=S^{2}(\mathbf{7}) \oplus(\mathbf{7} \otimes 14) \oplus S^{2}(14)$ which can be further decomposed into irreducible G_{2}-representations as

$$
(\mathbf{1} \oplus \mathbf{2 7}) \oplus(\mathbf{6 4} \oplus \mathbf{7} \oplus \mathbf{2 7}) \oplus(\mathbf{7 7} \oplus \mathbf{1} \oplus \mathbf{2 7})
$$

However, it must be orthogonal to $\Lambda^{4}=\mathbf{1} \oplus \mathbf{7} \oplus \mathbf{2 7}$ by the first Bianchi identity. This cuts down the curvature to an element of

$$
\underbrace{\mathbf{1} \oplus \mathbf{2 7}}_{\text {Ricci }} \oplus \underbrace{\mathbf{2 7} \oplus \mathbf{6 4} \oplus \mathbf{7 7}}_{\text {Weyl }} .
$$

That is, the Bianchi identity says that the 7 part is zero, that the two 1 's are multiples of each other, and that the three 27 's reduce to just two independent 27 's. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a flow of G_{2}-structures are: $R g, \mathrm{Ric}_{0}$ and W_{27}.

2nd order differential invariants of φ from Rm

The curvature decomposition is
$S^{2}\left(\Lambda^{2}\right)=S^{2}(\mathbf{7} \oplus \mathbf{1 4})=S^{2}(\mathbf{7}) \oplus(\mathbf{7} \otimes 14) \oplus S^{2}(14)$ which can be further decomposed into irreducible G_{2}-representations as

$$
(\mathbf{1} \oplus \mathbf{2 7}) \oplus(\mathbf{6 4} \oplus \mathbf{7} \oplus \mathbf{2 7}) \oplus(\mathbf{7 7} \oplus \mathbf{1} \oplus \mathbf{2 7})
$$

However, it must be orthogonal to $\Lambda^{4}=\mathbf{1} \oplus \mathbf{7} \oplus \mathbf{2 7}$ by the first Bianchi identity. This cuts down the curvature to an element of

$$
\underbrace{\mathbf{1} \oplus \mathbf{2 7}}_{\text {Ricci }} \oplus \underbrace{\mathbf{2 7} \oplus \mathbf{6 4} \oplus \mathbf{7 7}}_{\text {Weyl }} .
$$

That is, the Bianchi identity says that the 7 part is zero, that the two 1 's are multiples of each other, and that the three 27 's reduce to just two independent 27 's. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a flow of G_{2}-structures are: $R g$, Ric_{0} and W_{27}. Since

$$
W_{27}=\frac{3}{92} F+\frac{3}{2 \cdot 115} R g-\frac{3}{115} \mathrm{Ric}_{0}
$$

we'll use $R g$, Ric_{0} and F.

2nd order differential invariants of φ from ∇T

- In a similar way we can decompose $\nabla T \in \Gamma\left(T^{*} M \otimes \mathcal{T}^{2}\right)$ into irreducible G_{2}-representations and look for those $2 n d$ order differential invariants which can be made into a 3-form.

2nd order differential invariants of φ from ∇T

- In a similar way we can decompose $\nabla T \in \Gamma\left(T^{*} M \otimes \mathcal{T}^{2}\right)$ into irreducible G_{2}-representations and look for those $2 n d$ order differential invariants which can be made into a 3-form.
- However, not all invariants obtained from Rm and ∇T are independent because these quantities are related by the G_{2}-Bianchi identity.

2nd order differential invariants of φ from ∇T

- In a similar way we can decompose $\nabla T \in \Gamma\left(T^{*} M \otimes \mathcal{T}^{2}\right)$ into irreducible G_{2}-representations and look for those $2 n$ d order differential invariants which can be made into a 3-form.
- However, not all invariants obtained from Rm and ∇T are independent because these quantities are related by the G_{2}-Bianchi identity.

The G_{2}-Bianchi identity is

$$
G_{q i j}=\nabla_{i} T_{j q}-\nabla_{j} T_{i q}-T_{i a} T_{j b} \varphi_{q}^{a b}-\frac{1}{2} R_{i j a b} \varphi_{q}^{a b}
$$

$G_{q i j}$ are the components of a tensor $G \in \Gamma\left(T^{*} M \otimes \Lambda^{2}\left(T^{*} M\right)\right)$, because $G_{q i j}$ is skew in $i, j \rightsquigarrow$ decomposed into two components $G^{7}+G^{14}$, where $G^{k} \in \Gamma\left(T^{*} M \otimes \Lambda_{k}^{2}\left(T^{*} M\right)\right)$ for $k=7,14$. Using the decompositions

$$
\mathbf{7} \otimes \mathbf{7}=\mathbf{1} \oplus \mathbf{2 7} \oplus \mathbf{7} \oplus \mathbf{1 4} \quad \text { and } \quad \mathbf{7} \otimes \mathbf{1 4}=\mathbf{6 4} \oplus \mathbf{2 7} \oplus \mathbf{7}
$$

we can therefore decompose $G=0$ into seven independent relations.
Doing all these, we prove the following lemma.

All 2nd order differential invariants of φ

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants which can be made into a 3-form. The choices are

$$
h=\operatorname{Ric}_{0}, R g, F, \mathcal{L}_{\mathcal{V} T} g \quad \text { and } \quad X=\operatorname{div} T, \operatorname{div} T^{t}
$$

Note that $\left.\mathcal{V} T=\frac{1}{6}\left(T_{7}\right)\right\lrcorner \varphi$ and $(\operatorname{div} T)_{k}=\nabla^{i} T_{i k},\left(\operatorname{div} T^{t}\right)_{k}=\nabla^{i} T_{k}{ }^{i}$ are vector fields on M.

All 2nd order differential invariants of φ

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants which can be made into a 3-form. The choices are

$$
h=\operatorname{Ric}_{0}, R g, F, \mathcal{L}_{\mathcal{V} T} g \quad \text { and } \quad X=\operatorname{div} T, \operatorname{div} T^{t}
$$

Note that $\left.\mathcal{V} T=\frac{1}{6}\left(T_{7}\right)\right\lrcorner \varphi$ and $(\operatorname{div} T)_{k}=\nabla^{i} T_{i k},\left(\operatorname{div} T^{t}\right)_{k}=\nabla^{i} T_{k}{ }^{i}$ are vector fields on M.

These h 's and X 's appear in the first variation of the L^{2}-norm of the torsion components, i.e, in $\left.\frac{d}{d t}\right|_{t=0} \int_{M}\left|T_{i}\right|^{2}$ vol, $i=1,7,14,27$. The formulas are:

All 2nd order differential invariants of φ

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants which can be made into a 3-form. The choices are

$$
h=\operatorname{Ric}_{0}, R g, F, \mathcal{L}_{\mathcal{V} T} g \quad \text { and } \quad X=\operatorname{div} T, \operatorname{div} T^{t}
$$

Note that $\left.\mathcal{V} T=\frac{1}{6}\left(T_{7}\right)\right\lrcorner \varphi$ and $(\operatorname{div} T)_{k}=\nabla^{i} T_{i k},\left(\operatorname{div} T^{t}\right)_{k}=\nabla^{i} T_{k}{ }^{i}$ are vector fields on M.

These h 's and X 's appear in the first variation of the L^{2}-norm of the torsion components, i.e, in $\left.\frac{d}{d t}\right|_{t=0} \int_{M}\left|T_{i}\right|^{2}$ vol, $i=1,7,14,27$. The formulas are:

$$
\begin{aligned}
\frac{d}{d t} \int_{M}\left|T_{1}\right|^{2} \mathrm{Vol}= & \int_{M} h^{i p}\left((\operatorname{tr} T)^{2} g_{i p}-2 \operatorname{tr} T T_{i p}\right) \mathrm{Vol} \\
& -2 \int_{M} X^{p}\left(\operatorname{tr} T(\mathcal{V} T)_{p}+\left(\operatorname{div} T^{t}\right)_{p}\right) \mathrm{Vol}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \int_{M}\left|T_{7}\right|^{2} \mathrm{Vol}=\int_{M} 6 h^{\mathrm{ip}}\left[\left(\mathcal{L}_{\mathcal{V} T} g\right)_{i p}+R g_{i p}+\operatorname{tr}\left(T^{2}\right) g_{i p}-(\operatorname{tr} T)^{2} g_{i p}+T_{l a} T_{j q} \psi^{\text {lajq }} g_{i p}\right. \\
& \left.-|\mathcal{V} T|^{2} g_{i p}-4\left(T_{\text {skew }}\right)_{\text {is }} T_{p}^{s}-2 T_{m n} T_{\text {is }} \psi_{p}^{m n s}\right] \text { Vol } \\
& +\int_{M} 6 X^{q}\left[-2(\operatorname{div} T)_{q}+2\left(\operatorname{div} T^{t}\right)_{q}+2 \nabla_{p} T_{m n} \psi^{p m n}{ }_{q}\right. \\
& \left.+4\left(T_{\text {skew }}\right)_{p q} \mathcal{V} T^{p}+2\left(T^{2}\right)_{p n} \varphi_{q}^{p n}\right] \text { Vol } \\
& \frac{d}{d t} \int_{M}\left|T_{14}\right|^{2} \text { Vol }=\int_{M} h^{i p}\left[R_{i p}-\frac{11}{2}\left(\mathcal{L}_{\mathcal{V} T} g\right)_{i p}-\frac{1}{4} F_{i p}-6 R g_{i p}+2\left(T^{2}\right)_{p i}-\left(T \circ T^{t}\right)_{i p}\right. \\
& -\operatorname{tr} T T_{p i}-\frac{1}{2} T_{m s} T_{n t} \varphi_{i}^{m n} \varphi_{p}^{\text {st }}-2 T_{k m}\left(T_{\text {skew }}\right)_{p q} \psi_{i}^{k m q} \\
& +12 T_{m n} T_{i s} \psi_{p}^{m n s}+24\left(T_{\text {skew }}\right)_{i s} T_{p}^{s}+\frac{1}{2}|T|^{2} g_{\text {ip }}-\frac{13}{2} \operatorname{tr}\left(T^{2}\right) g_{\text {ip }} \\
& \left.+6(\operatorname{tr} T)^{2} g_{i p}+6|\mathcal{V} T|^{2} g_{i p}-6 T_{l a} T_{j q} \psi^{\text {lpja }} g_{i p}\right] \mathrm{Vol} \\
& -X^{q} \int_{M}\left[13(\operatorname{div} T)_{q}-13\left(\operatorname{div} T^{t}\right)_{q}-24\left(T_{\text {skew }}\right)_{p q}(\mathcal{V} T)^{p}\right. \\
& \left.-13\left(T^{2}\right)_{p l} \varphi^{p l}{ }_{q}-12 \nabla_{p} T_{m n} \psi^{p m n}{ }_{q}\right] \mathrm{Vol}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} \int_{M}\left|T_{27}\right|^{2} \mathrm{Vol}= & \int_{M} h^{i p}\left[R_{i p}+\frac{1}{2}\left(\mathcal{L}_{\mathcal{V} T} g\right)_{i p}+\frac{1}{4} F_{i p}+\frac{1}{2} T_{m s} T_{n t} \varphi_{i}^{m n} \varphi_{p}^{s t}-\frac{5}{7} \operatorname{tr} T T_{p i}\right. \\
& -2 T_{k m}\left(T_{\text {sym }}\right)_{p q} \psi_{i}^{k m q}-\left(T \circ T^{t}\right)_{i p}+\frac{1}{2}|T|^{2} g_{i p}+\frac{1}{2} \operatorname{tr}\left(T^{2}\right) g_{i p} \\
& \left.-\frac{1}{7}(\operatorname{tr} T)^{2} g_{i p}\right] \text { Vol } \\
& -\int_{M} X^{q}\left[(\operatorname{div} T)_{q}+\frac{9}{7}\left(\operatorname{div} T^{t}\right)_{q}+T_{p l}^{2} \varphi_{q}^{p l}+\frac{2}{7} \operatorname{tr} T(\mathcal{V} T)_{q}\right. \\
& \left.+\frac{2}{7}(\mathcal{V} T)^{p} T_{q p}\right] \text { Vol } .
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t} \int_{M}\left|T_{27}\right|^{2} \mathrm{Vol}= & \int_{M} h^{i p}\left[R_{i p}+\frac{1}{2}\left(\mathcal{L}_{\mathcal{V} T} g\right)_{i p}+\frac{1}{4} F_{i p}+\frac{1}{2} T_{m s} T_{n t} \varphi_{i}^{m n} \varphi_{p}^{s t}-\frac{5}{7} \operatorname{tr} T T_{p i}\right. \\
& -2 T_{k m}\left(T_{\text {sym }}\right)_{p q} \psi_{i}^{k m q}-\left(T \circ T^{t}\right)_{i p}+\frac{1}{2}|T|^{2} g_{i p}+\frac{1}{2} \operatorname{tr}\left(T^{2}\right) g_{i p} \\
& \left.-\frac{1}{7}(\operatorname{tr} T)^{2} g_{i p}\right] \text { Vol } \\
& -\int_{M} X^{q}\left[(\operatorname{div} T)_{q}+\frac{9}{7}\left(\operatorname{div} T^{t}\right)_{q}+T_{p l}^{2} \varphi_{q}^{p l}+\frac{2}{7} \operatorname{tr} T(\mathcal{V} T)_{q}\right. \\
& \left.+\frac{2}{7}(\mathcal{V} T)^{p} T_{q p}\right] \mathrm{Vol} .
\end{aligned}
$$

Thus, we are led to define the following family of flows of G_{2}-structures.

Flows of G_{2} structures

[Flows of G_{2}-structures]

Let $\left(M^{7}, \varphi_{0}\right)$ be a compact manifold. The general flow of G_{2}-structures is the initial value problem

$$
\begin{aligned}
\frac{\partial \varphi}{\partial t} & \left.=\left(-\operatorname{Ric}+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi+\text { I.o.t. } \\
\varphi(0) & =\varphi_{0}
\end{aligned}
$$

with $a, \beta, b_{1}, b_{2} \in \mathbb{R}$.

Remark: We do not put any condition on φ (like $d \varphi=0, d * \varphi=0$ or isometric).

Flows of G_{2} structures

[Flows of G_{2}-structures]

Let $\left(M^{7}, \varphi_{0}\right)$ be a compact manifold. The general flow of G_{2}-structures is the initial value problem

$$
\begin{aligned}
\frac{\partial \varphi}{\partial t} & \left.=\left(-\operatorname{Ric}+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi+\text { l.o.t. } \\
\varphi(0) & =\varphi_{0}
\end{aligned}
$$

with $a, \beta, b_{1}, b_{2} \in \mathbb{R}$.

Remark: We do not put any condition on φ (like $d \varphi=0, d * \varphi=0$ or isometric).

Special cases

- $a=\beta=b_{1}=b_{2}=0$ gives the usual Ricci flow of G_{2}-structures. The analytic properties of this flow is well-understood, in particular, we have short-time existence and uniqueness, a priori estimates and a compactness theorem for solutions.

Special cases contd.

$\left.\frac{\partial \varphi}{\partial t}=\left(-\operatorname{Ric}+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi+$ l.o.t.

- $a=\beta=b_{2}=0, b_{1}=1$ and no Ric term gives the isometric/harmonic flow of G_{2}-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2} \mathrm{Vol}$ restricted to $\left[\left[\varphi_{0}\right]\right]_{\text {iso }}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.

Special cases contd.

$\left.\frac{\partial \varphi}{\partial t}=\left(-\operatorname{Ric}+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi+$ l.o.t.

- $a=\beta=b_{2}=0, b_{1}=1$ and no Ric term gives the isometric/harmonic flow of G_{2}-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2} \mathrm{Vol}$ restricted to $\left[\left[\varphi_{0}\right]\right]_{\text {iso }}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.
- $a=\beta=b_{2}=0$ gives the Ricci flow coupled with the isometric flow of G_{2}-structures. We prove short-time existence and uniqueness of solutions and a priori estimates.

Special cases contd.

$\left.\frac{\partial \varphi}{\partial t}=\left(-\operatorname{Ric}+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi+$ l.o.t.

- $a=\beta=b_{2}=0, b_{1}=1$ and no Ric term gives the isometric/harmonic flow of G_{2}-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2} \mathrm{Vol}$ restricted to $\left[\left[\varphi_{0}\right]\right]_{\text {iso }}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.
- $a=\beta=b_{2}=0$ gives the Ricci flow coupled with the isometric flow of G_{2}-structures. We prove short-time existence and uniqueness of solutions and a priori estimates.
- $a=-\frac{1}{2}, \beta=0, b_{1}=1, b_{2}=0$ so we have
$\left.\partial_{t} \varphi=\left(-\operatorname{Ric}-\frac{1}{2} \mathcal{L}_{\mathcal{V} T} g\right) \diamond \varphi+\operatorname{div} T\right\lrcorner \psi+$ I.o.t. \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2}$ Vol on all G_{2}-structures. Studied by Weiss-Witt (2012). We have short-time existence and uniqueness of solutions.

Special cases contd.

$\left.\frac{\partial \varphi}{\partial t}=\left(-\operatorname{Ric}+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi+$ I.o.t.

- $a=\beta=b_{2}=0, b_{1}=1$ and no Ric term gives the isometric/harmonic flow of G_{2}-structures \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2} \mathrm{Vol}$ restricted to $\left[\left[\varphi_{0}\right]\right]_{\text {iso }}$. Analytic properties well-understood and we have a monotonicity formula and entropy functional.
- $a=\beta=b_{2}=0$ gives the Ricci flow coupled with the isometric flow of G_{2}-structures. We prove short-time existence and uniqueness of solutions and a priori estimates.
- $a=-\frac{1}{2}, \beta=0, b_{1}=1, b_{2}=0$ so we have
$\left.\partial_{t} \varphi=\left(-\operatorname{Ric}-\frac{1}{2} \mathcal{L}_{\mathcal{V} T} g\right) \diamond \varphi+\operatorname{div} T\right\lrcorner \psi+$ I.o.t. \rightsquigarrow negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2}$ Vol on all G_{2}-structures. Studied by Weiss-Witt (2012). We have short-time existence and uniqueness of solutions.

What can we say about the short-time existence and uniqueness of solutions of (GGF) in general?

Main Theorem

Theorem (D.-Gianniotis-Karigiannis, '23)

Let $\left(M, \varphi_{0}\right)$ be a compact 7 -manifold with a G_{2}-structure φ_{0}. Then there exists a unique $\varphi(t), t \in[0, \varepsilon)$, such that

$$
\begin{aligned}
\frac{\partial \varphi(t)}{\partial t} & \left.=\left(-R i c+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi \\
\varphi(0) & =\varphi_{0}
\end{aligned}
$$

provided that $0 \leq b_{1}-a-1<4, b_{1}+b_{2} \geq 1$ and $|\beta|<\frac{c}{4}$, where $c=1-\frac{1}{4}\left(b_{1}-a-1\right)$.

Main Theorem

Theorem (D.-Gianniotis-Karigiannis, '23)

Let $\left(M, \varphi_{0}\right)$ be a compact 7 -manifold with a G_{2}-structure φ_{0}. Then there exists a unique $\varphi(t), t \in[0, \varepsilon)$, such that

$$
\begin{aligned}
\frac{\partial \varphi(t)}{\partial t} & \left.=\left(-R i c+a \mathcal{L}_{\mathcal{V} T} g+\beta F\right) \diamond \varphi+\left(b_{1} \operatorname{div} T+b_{2} \operatorname{div} T^{t}\right)\right\lrcorner \psi \\
\varphi(0) & =\varphi_{0}
\end{aligned}
$$

provided that $0 \leq b_{1}-a-1<4, b_{1}+b_{2} \geq 1$ and $|\beta|<\frac{c}{4}$, where $c=1-\frac{1}{4}\left(b_{1}-a-1\right)$.

Idea of the proof:

- Let the RHS of (GGF) be P_{φ}. Calculate the principal symbols of the operators involved: Ric, $\mathcal{L}_{\mathcal{V} T} g, F, \operatorname{div} T$, $\operatorname{div} T^{t}$. It turns out that $\operatorname{dim} \operatorname{ker}\left(\sigma\left(D P_{\varphi}\right)(h, X)\right) \geq 7$ because of diffeomorphism invariance of the tensors involved.

Proof contd.

- We prove that $\operatorname{dim} \operatorname{ker}\left(\sigma\left(D P_{\varphi}\right)(h, X)\right)=7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_{1}: S^{2}\left(T_{x}^{*} M\right) \rightarrow T_{x}^{*} M$ with $B_{1}(h)_{k}=\xi_{a} h^{a}{ }_{k}-\frac{1}{2} \xi_{k} \operatorname{tr} h$ which is the usual Bianchi operator in the Ricci-flow. We introduce $B_{2}: T_{x}^{*} M \rightarrow T_{x}^{*} M$ by $B_{2}(X)_{k}=\xi_{a} X_{b} \varphi^{a b}{ }_{k}$ and use both of these.

Proof contd.

- We prove that $\operatorname{dim} \operatorname{ker}\left(\sigma\left(D P_{\varphi}\right)(h, X)\right)=7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_{1}: S^{2}\left(T_{x}^{*} M\right) \rightarrow T_{x}^{*} M$ with $B_{1}(h)_{k}=\xi_{a} h^{a}{ }_{k}-\frac{1}{2} \xi_{k} \operatorname{tr} h$ which is the usual Bianchi operator in the Ricci-flow. We introduce $B_{2}: T_{x}^{*} M \rightarrow T_{x}^{*} M$ by $B_{2}(X)_{k}=\xi_{a} X_{b} \varphi_{k}^{a b}$ and use both of these.
- Because of above, we can use the DeTurck's trick: look at the modified operator $P_{\varphi}+\mathcal{L}_{W \varphi}$ with $W \in \Gamma(T M)$ given by

$$
W^{k}=g^{i j}\left(\Gamma_{i j}^{k}-\bar{\Gamma}_{i j}^{k}\right)-2 a \mathcal{V} T^{k}
$$

where $\bar{\Gamma}$ are the Christoffel symbols w.r.t. a fixed background G_{2}-structure, e.g., φ_{0}.

Proof contd.

- We prove that $\operatorname{dim} \operatorname{ker}\left(\sigma\left(D P_{\varphi}\right)(h, X)\right)=7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_{1}: S^{2}\left(T_{x}^{*} M\right) \rightarrow T_{x}^{*} M$ with $B_{1}(h)_{k}=\xi_{a} h^{a}{ }_{k}-\frac{1}{2} \xi_{k} \operatorname{tr} h$ which is the usual Bianchi operator in the Ricci-flow. We introduce $B_{2}: T_{x}^{*} M \rightarrow T_{x}^{*} M$ by $B_{2}(X)_{k}=\xi_{a} X_{b} \varphi_{k}^{a b}$ and use both of these.
- Because of above, we can use the DeTurck's trick: look at the modified operator $P_{\varphi}+\mathcal{L}_{W \varphi}$ with $W \in \Gamma(T M)$ given by

$$
W^{k}=g^{i j}\left(\Gamma_{i j}^{k}-\bar{\Gamma}_{i j}^{k}\right)-2 a \mathcal{V} T^{k}
$$

where $\bar{\Gamma}$ are the Christoffel symbols w.r.t. a fixed background G_{2}-structure, e.g., φ_{0}.

- The symbol of $P_{\varphi}+\mathcal{L}_{W} \varphi$ is a multiple of Id and hence we can prove short-time existence and uniqueness using DeTurck's trick.

Future Problems

- One can ask the same questions for general flows of $\operatorname{Spin}(7)$-structures on 8 -manifolds. This has been done by D. '23 and is an upcoming work.
- Find the flow with the "nicest" evolution of the torsion. This will involve the lower order terms as well. We have a "heat-type" equation for T along the negative gradient flow of $\varphi \mapsto \int_{M}|T|^{2}$ Vol functional
($\beta=b_{2}=0, a=-\frac{1}{2}, b_{1}=1$ case).
- A monotone quantity, just like the case of the isometric flow and if possible, an entropy functional, "smallness" of which guarantees long time existence.
- Examples of solutions and solitons.
- Dynamical stability of torsion-free G_{2}-structures along the flows considered here (already done for the neg. grad. flow by Weiss-Witt (2012)).
- Applications of the flow to 3,4 and 6 dimensions à la Fine-Yao, Lambert-Lotay and Picard-Suan.

Thank you for your attention.

