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Motivation

Motivation

Gauge theory is essentially the study of connections on principal
G-bundles over manifolds, for a Lie group G.

Gauge transformations of a connection are given by the action of the
group of sections of an associated bundle.

Here we build up a gauge theory that admits non-associative
transformations.

Algebraically, this is based on the theory of loop, which are
non-associative analogues of groups.
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Motivation

An example of such a theory first arose in the study of 7-dimensional
manifolds with a G2-structure.

In particular, each G2-structure defines a unique Riemannian metric.
However, the set of G2-structures that are compatible with a fixed
metric can be parametrized by sections of a unit octonion bundle.
The relationship between the group G2 and the octonions is of course
natural - G2 is the automorphism group of the non-associative
octonion algebra.
It has been noted [SG’17] that the choice of the G2-structure in a
fixed metric class can be regarded as choice of gauge, with gauge
transformations given by octonion multiplication.
This talk is based on the following papers:

1 SG, G2-structures and octonion bundles, Adv. Math, 2017,
arXiv:1510.04226

2 SG, Smooth Loops and Smooth Bundles, Adv. Math., 2021, arXiv:
2008.08120

3 SG, The Coulomb gauge in non-associative gauge theory,
arXiv:2303.00664

This work has been supported by the NSF grant DMS-1811754.
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Loops

Loops

Definition

A quasigroup L is a set together with the following operations L×L −→ L
1 Product (p, q) 7→ pq

2 Right quotient (p, q) 7→ p/q

3 Left quotient (p, q) 7→ q\p,

that satisfy the following properties

(p/q) q = p q (q\p) = p (pq) /q = p p\ (pq) = q.

A loop is a quasigroup with an identity element 1 (i.e. a unital
quasigroup).

A smooth loop is a loop that is also a smooth manifold, with left and
right product maps Lp and Rp being diffeomorphisms for every p ∈ L.
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Loops

Examples

Example

Any group is a loop, and conversely, any associative loop is a group.

Example

The set S7 of unit octonions forms a non-associative loop. It satisfies
additional identities, and is a Moufang loop.

Example

Consider the set Pn of positive-definite, symmetric real matrices. Then
define a product A ◦B of two such matrices given by

A ◦B =
(
AB2A

) 1
2 .

This product defines a loop structure on Pn. If n > 1, it is non-associative.
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Loops

Pseudoautomorphisms

Definition

A pseudoautomorphism of a smooth loop L is a diffeomorphism
h : L −→ L, such that there exists a diffeomorphism h′ : L −→ L, known
as the partial pseudoautomorphism corresponding to h, such that for any
p, q ∈ L,

h (pq) = h′ (p)h (q) . (1)

The element h (1) ∈ L is the companion of h′, and h = Rh(1) ◦ h′.
We also see the following property of h′ with respect to quotients:
h′ (p/q) = h (p) /h (q) .

The sets of pseudoautomorphisms Ψ and partial
pseudoautomorphisms Ψ′ are both Lie groups (at least for compact L
they are finite-dimensional).

We also see that the automorphism group of the loop L is the
subgroup H ⊂ Ψ which is the stabilizer of 1 ∈ L.
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Loops

We can regard L as a set with the action of Ψ or with action of Ψ′. In
latter case, denote the Ψ′-set by L′.

From (1), we can regard the loop product as a map L′ × L −→ L.

Example

Suppose L =S7. In this case, Ψ
(
S7

) ∼= Spin (7) and Ψ′ (S7
) ∼= SO (7) .

The automorphism group is G2. The action of SO (7) corresponds to the
vector representation of Spin (7) and the ‘full’ action of Spin (7)
corresponds to the spinor representation.
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Tangent algebra

Tangent algebra

Recall that for any s ∈ L, we have the diffeomorphisms

Rs : L −→ L
q 7−→ qs.

Given a tangent vector ξ ∈ T1L, define the vector field ρ (ξ) given by

ρ (ξ)q = (Rq)∗ ξ (2)

at any p ∈ L.
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Tangent algebra

Tangent algebra

Definition

For any ξ, γ ∈ T1L, the p-bracket [·, ·](p) is defined as

[ξ, γ](p) = −
(
R−1

p

)
∗ [ρ (ξ) , ρ (γ)]p . (3)

Definition

The vector space T1L together with the bracket [·, ·](p) is the tangent
algebra l(p) of (L, ◦p).

Define b : L −→ l⊗ Λ2l∗ given by p 7→ [·, ·](p) . Then, in general
db|p ̸= 0. Let a (ξ, η, γ) = dρ(γ)b (ξ, η) .
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Tangent algebra

Maurer-Cartan form

Given p ∈ L and and ξ ∈ l, define θp ∈ Ω1 (l) via

θp

(
ρ (ξ)p

)
=

(
R−1

p

)
∗ ρ (ξ)p = ξ.

Theorem (SG’21)

Let p ∈ L and let [·, ·](p) be bracket on l(p). Then θ satisfies the following
equation at p:

(dθ)p −
1

2
[θ, θ](p) = 0, (4)

where [θ, θ](p) is the bracket of L-algebra-valued 1-forms such that for

any X,Y ∈ TpL, 1
2 [θ, θ]

(p) (X,Y ) = [θ (X) , θ (Y )](p) .

From (4) we obtain a generalization of the Jacobi identity, known as
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Tangent algebra

Exponential map

We can define exponential maps via integral curves of fundamental
vector fields.

Let ξ ∈ l, if ρ (ξ) is complete, define exps ξ = pξ (1) /s, where pξ (t)
is the maximal integral curve of ρ (ξ) with pξ (0) = s.

If L is compact, then any vector field is complete.

If L is non-compact, need power-associativity, so that powers of an
element p ∈ L associate, then pξ (nh) = pξ (h)

n can be defined
unambiguously (Kuz’min’1971).

exps : l −→ L is a local diffeomorphism from neighborhood of 0 ∈ l
to a neighborhood of 1 ∈ L.
Under additional assumptions on L (left power-associative), exps is
independent on s.
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Tangent algebra

For a fixed ξ ∈ l and s ∈ L, consider the equation for l-valued
quantity η

dη

dt
= [ξ, η]exps(tξ)s .

This is a homogeneous linear first-order ODE, so for all t ∈ I there

exists an evolution operator U
(s)
ξ (t) ∈ GL (l), with U

(s)
ξ (0) = idl,

such that
η (t) = U

(s)
ξ (t) η0. (6)

In the Lie group setting, the bracket is constant, so in that case

U
(s)
ξ (t) = eadtξ = Adexp(tξ) .
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Loop bundles

Loop bundles

Let M be a smooth manifold with a Ψ-principal bundle P. Recall that
if S is a set with an action of Ψ on it, then we can define an
associated bundle P ×Ψ S, with sections being in an 1-1
correspondence with equivariant maps P −→ S. Define the following
bundles:

(h ∈ Ψ, and L′ is the set L equipped the action of Ψ′).

Bundle Equivariant map Equivariance property
P k : P −→ Ψ kph = h−1kp
Q′ = P ×Ψ′ L′ q : P −→ L′ qph = (h′)−1 qp
Q = P×ΨL r : P −→ L rph = h−1 (rp)

A = P×Ψ′
∗ l η : P −→ l ηph = (h′)−1

∗ ηp
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Loop bundles

Suppose A ∈ C∞ (P,L′) and s ∈ C∞ (P,L) , then if both A and s
are equivariant, so is As ∈ C∞ (P,L).

Conversely, if r ∈ C∞ (P,L) is equivariant, we can write r = As, for
equivariant A = r/s ∈ C∞ (P,L′) .

Choose a defining equivariant map s ∈ C∞ (P,L). The choice is
arbitrary, but it allows to compare equivariant L-valued maps.

Given s, easy to show that corresponding maps bs and as are also
equivariant.
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Loop bundles

Connections and Torsion

Suppose the principal Ψ-bundle P has a principal connection given by

TP = HP ⊕ VP

and let ω : TP −→ p be the corresponding connection 1-form, where
p is the Lie algebra of Ψ.

Recall that given an equivariant map f : P −→ S, the covariant
derivative is defined as

dωf := f∗ ◦ projH : TP −→ HP −→ TS. (7)

Equivalently,
dωf = df + ω · f

where · denotes the infinitesimal action of p on S.
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Loop bundles

Let s ∈ C∞ (P,L) be equivariant and let ω be a connection on P.

Definition

The torsion T (s,ω) of s and ω is a horizontal l-valued 1-form on P given by

T (s,ω) = s∗θ ◦ projH (8)

Equivalently, at p ∈ P, we have

T (s,ω)
∣∣∣
p
=

(
R−1

sp

)
∗
dωs|p . (9)
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Loop bundles

Equivariant horizontal (i.e. basic) forms on P give rise to sections of
corresponding associated bundles over the base manifold M.

Let us now switch perspective, and work in terms of sections of
bundles.

We will consider s to be a smooth section of the bundle Q, so that
we will say s ∈ Γ (Q) , and will refer to it as the defining section.

Also consider sections A ∈ Γ (Q′) , which admit the action of Ψ′.

The product on elements of L′ and L, then carries over to sections of
bundles, so that we have a product Γ (Q′)× Γ (Q) −→ Γ (Q) .

The connection ω on P then induces connections on the associated
bundles and correspondingly, covariant derivatives on sections of these
bundles.

The torsion T (s,ω), as defined earlier, was a horizontal and equivariant
1-form on P with values in l, so it uniquely corresponds to a 1-form
on M with values in the bundle A, i.e., now we will consider
T (s,ω) ∈ Ω1 (A) .
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Loop bundles

Non-associative gauge theory

Definition

A non-associative gauge theory is defined by the following objects:

1 A smooth loop L with a finite-dimensional pseudoautomorphism Lie
group Ψ and tangent algebra l at identity.

2 A smooth manifold M with a principal Ψ-bundle P, and associated
bundles Q, Q′, A, with fibers L, L′, and l, respectively.

3 A configuration (s, ω), where s ∈ Γ (Q) is a defining section and ω is
a connection on P. Each configuration carries torsion
T (s,ω) ∈ Ω1 (A) .

Definition

A loop gauge transformation is a transformation of the defining section s
by left multiplication by a section A ∈ Γ (Q′) , such that s 7→ As, and
hence T (s,ω) 7→ T (As,ω).
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Loop bundles

Lemma (SG’23)

Suppose T (s,ω) is the torsion with respect to a defining section s ∈ Γ (Q)
and a connection ω. Suppose At = exps (tξ) ∈ Γ (Q′) , then

d

dt
T (Ats,ω) =

[
ξ, T (Ats,ω)

](Ats)
+ dωξ. (10)

In particular, we get

T ((exps tξ)s,ω) = U
(s)
ξ (t)T (s,ω) (11)

+U
(s)
ξ (t)

(∫ 1

0
U

(s)
ξ (τ)−1 dτ

)
dωξ.
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Loop bundles

Energy functional

Suppose M is compact with a metric g. Define the functional

Eω (s) =

∫
M

∣∣∣T (s,ω)
∣∣∣2 volg, (12)

where |·| is a combination of the metric g on M and an inner product
on sections of A.

Theorem (SG’21)

Suppose L is a semisimple Moufang loop, and suppose the inner product
on A is given by the Killing form, then the critical points of the functional
(12) with respect to deformations of the defining section s are those for
which

(dω)∗ T (s,ω) = 0. (13)
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Loop bundles

Theorem (SG’23)

Suppose L is a smooth compact loop with tangent algebra l and
pseudoautomorphism group Ψ.

Let (M, g) be a closed, smooth
Riemannian manifold of dimension n ≥ 2, and let P be a Ψ-principal
bundle over M with a smooth connection ω. Suppose k ≥ 0 and r ≥ 0
such that (k − 1) r ≥ n. Then, there exist constants δ ∈ (0, 1] and
K ∈ (0,∞) , such that if s ∈ Γ (Q) is a smooth defining section for which∥∥∥T (s,ω)

∥∥∥
Wk−1,r

< δ,

then there exists a smooth A ∈ Γ (Q′) , such that

(dω)∗ T (As,ω) = 0

and ∥∥∥T (As,ω)
∥∥∥
Wk−1,r

< K
∥∥∥T (s,ω)

∥∥∥
Wk−1,r

(
1 +

∥∥∥T (s,ω)
∥∥∥k−1

Wk−1,r

)
. (14)
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Loop bundles

Outline of the proof

The idea is to use the Implicit Function Theorem for Banach Spaces.

Let K = ker∆(ω), then restricting ξ ∈ K⊥, define

G : W (k−1),r (T ∗M ⊗A)×
(
K⊥ ∩W k,r (A)

)
−→ K⊥∩W (k−2),r

A1
(A) .

by

G (a, ξ) = (dω)∗
(
U

(s)
ξ

(
a− T (s,ω)

)
+ T ((exps ξ)s,ω)

)
= (dω)∗

(
U

(s)
ξ a+ U

(s)
ξ

(∫ 1

0
U

(s)
ξ (τ)−1 dτ

)
dωξ

)
.(15)
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Loop bundles

Consider the differential of G at (a, ξ) = 0 in the direction
(b, η) ∈ W (k−1),r (T ∗M ⊗A)×

(
K⊥ ∩W k,r (A)

)
:

DG|(0,0) (b, η) = (dω)∗ b+ (dω)∗ dωη.

IFT gives us a unique smooth map ξ (a) for any ∥a∥W (k−1),r < δ,
such that G (a, ξ (a)) = 0.

Setting a = T (s,ω), gives us the desired result with A = exps (ξ).

The smoothness of A follows by elliptic regularity.
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Loop bundles

G2-geometry

Consider L =S7 - the Moufang loop of unit octonions. Then we have
the following correspondence:

Object Loops Octonions
Pseudoautomorphism group Ψ Spin (7)
Partial pseudoautomorphism group Ψ′ SO (7)
Automorphism group H G2

Lie algebra of Ψ p so (7)
Loop with full action of Ψ L UO ⊂S7

Loop with partial action of Ψ L′ UO′ ⊂ V1 ⊕ V7

Tangent algebra l ImO ∼=V7
∼= R7

Here S7 and V7 are the 8-dim “spinor” and 7-dimensional “vector”
representations of Spin (7), respectively.
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Loop bundles

Suppose M is 7-dimensional compact smooth manifold that admits
G2-structures. Then

Loop bundles G2-geometry
P Spin structure: principal Spin (7)-bundle over M
Q′ = P ×Ψ′ L′ Unit octonion bundle UOM ⊂ Ω0 (M)⊕ TM
Q = P×ΨL Unit spinor bundle US
A = P×Ψ′

∗ l Bundle of imaginary octonions: TM
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Loop bundles

A G2-structure φs may be defined by a unit spinor, i.e. a section of
s ∈ Q.

Then, the torsion T (ξ) of φξ is given by

∇S
Xξ = T

(ξ)
X · ξ, (16)

We see that the torsion T (ξ) of the G2-structure φξ precisely

corresponds to the torsion T (ξ,∇) of the section ξ with respect to the
Levi-Civita connection ∇.

Given a unit octonion section A ∈ Γ (UOM) , A · ξ is again a unit
spinor which defines a G2-structure φA·ξ.

Considering both A and ξ as octonions in UO′ and UO, respectively,
this is just octonion multiplication Aξ.
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Loop bundles

Theorem (SG’23)

Suppose M is a closed 7-dimensional manifold with a smooth G2-structure
φ with torsion T with respect to the Levi-Civita connection ∇. Also,
suppose k is a positive integer and p is a positive real number such that
kp > 7. Then, there exist constants δ ∈ (0, 1] and K ∈ (0,∞) , such that
if T satisfies

∥T∥Wk,p < δ,

then there exists a smooth section V ∈ Γ (UOM) , such that

div T (V ) = 0

and ∥∥∥T (V )
∥∥∥
Wk,p

< K ∥T∥Wk,p

(
1 + ∥T∥kWk,p

)
. (17)

If we choose p = 2 to work with Hilbert spaces, then for a smooth
section V, we need k ≥ 4, so the condition on T is to be sufficiently
small in the W 4,2-norm.
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Concluding remarks

Concluding remarks

These ideas show that some well-known results and techniques from
classical gauge theory can be reinterpreted and adapted in a
non-associative setting.

It will be interesting to see what other gauge theory concepts have an
analog, since any such advances will give immediate results in
G2-geometry.

It is also interesting to see what other structures in differential
geometry can be obtained by looking at loop bundles and their
corresponding gauge theories.

Aspects of the presented theory may also carry over to homogeneous
or parallelizable manifolds.
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