Non-associative gauge theory

Sergey Grigorian

University of Texas Rio Grande Valley, Edinburg, TX, USA

BRIDGES Workshop, Pau, June 19, 2023

• Gauge theory is essentially the study of connections on principal *G*-bundles over manifolds, for a Lie group *G*.

- Gauge theory is essentially the study of connections on principal *G*-bundles over manifolds, for a Lie group *G*.
- Gauge transformations of a connection are given by the action of the group of sections of an associated bundle.

- Gauge theory is essentially the study of connections on principal *G*-bundles over manifolds, for a Lie group *G*.
- Gauge transformations of a connection are given by the action of the group of sections of an associated bundle.
- Here we build up a gauge theory that admits *non-associative* transformations.

- Gauge theory is essentially the study of connections on principal *G*-bundles over manifolds, for a Lie group *G*.
- Gauge transformations of a connection are given by the action of the group of sections of an associated bundle.
- Here we build up a gauge theory that admits *non-associative* transformations.
- Algebraically, this is based on the theory of *loop*, which are non-associative analogues of groups.

• An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G_2 and the octonions is of course natural G_2 is the automorphism group of the non-associative octonion algebra.

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G_2 and the octonions is of course natural G_2 is the automorphism group of the non-associative octonion algebra.
- It has been noted [SG'17] that the choice of the G_2 -structure in a fixed metric class can be regarded as choice of gauge, with gauge transformations given by octonion multiplication.

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G_2 and the octonions is of course natural G_2 is the automorphism group of the non-associative octonion algebra.
- It has been noted [SG'17] that the choice of the G_2 -structure in a fixed metric class can be regarded as choice of gauge, with gauge transformations given by octonion multiplication.
- This talk is based on the following papers:

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G_2 and the octonions is of course natural G_2 is the automorphism group of the non-associative octonion algebra.
- It has been noted [SG'17] that the choice of the G_2 -structure in a fixed metric class can be regarded as choice of gauge, with gauge transformations given by octonion multiplication.
- This talk is based on the following papers:
 - SG, G₂-structures and octonion bundles, Adv. Math, 2017, arXiv:1510.04226

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G_2 and the octonions is of course natural G_2 is the automorphism group of the non-associative octonion algebra.
- It has been noted [SG'17] that the choice of the G_2 -structure in a fixed metric class can be regarded as choice of gauge, with gauge transformations given by octonion multiplication.
- This talk is based on the following papers:
 - SG, G₂-structures and octonion bundles, Adv. Math, 2017, arXiv:1510.04226
 - SG, Smooth Loops and Smooth Bundles, Adv. Math., 2021, arXiv: 2008.08120

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G_2 and the octonions is of course natural G_2 is the automorphism group of the non-associative octonion algebra.
- It has been noted [SG'17] that the choice of the G_2 -structure in a fixed metric class can be regarded as choice of gauge, with gauge transformations given by octonion multiplication.
- This talk is based on the following papers:
 - SG, G₂-structures and octonion bundles, Adv. Math, 2017, arXiv:1510.04226
 - SG, Smooth Loops and Smooth Bundles, Adv. Math., 2021, arXiv: 2008.08120
 - SG, The Coulomb gauge in non-associative gauge theory, arXiv:2303.00664

- An example of such a theory first arose in the study of 7-dimensional manifolds with a G_2 -structure.
- In particular, each G_2 -structure defines a unique Riemannian metric.
- However, the set of G₂-structures that are compatible with a fixed metric can be parametrized by sections of a *unit octonion bundle*.
- The relationship between the group G₂ and the octonions is of course natural G₂ is the automorphism group of the non-associative octonion algebra.
- It has been noted [SG'17] that the choice of the G_2 -structure in a fixed metric class can be regarded as choice of gauge, with gauge transformations given by octonion multiplication.
- This talk is based on the following papers:
 - SG, G₂-structures and octonion bundles, Adv. Math, 2017, arXiv:1510.04226
 - SG, Smooth Loops and Smooth Bundles, Adv. Math., 2021, arXiv: 2008.08120
 - SG, The Coulomb gauge in non-associative gauge theory, arXiv:2303.00664
- This work has been supported by the NSF grant DMS-1811754.

Loops

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{\ } \textbf{Product} \ (p,q) \mapsto pq$
- $\textcircled{O} \ \mathsf{Right quotient} \ (p,q) \mapsto p/q$
- $\textcircled{O} \text{ Left quotient } (p,q) \mapsto q \backslash p,$

Loops

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{\ } \textbf{Product} \ (p,q) \mapsto pq$
- $\textcircled{O} \ \mathsf{Right quotient} \ (p,q) \mapsto p/q$
- $\textcircled{O} \text{ Left quotient } (p,q) \mapsto q \backslash p,$

that satisfy the following properties

$$\left(p/q\right)q=p \qquad q\left(q\backslash p\right)=p \qquad \left(pq\right)/q=p \quad p\backslash \left(pq\right)=q.$$

Loops

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{\ } \textbf{Product} \ (p,q) \mapsto pq$
- $\textcircled{O} \ \mathsf{Right quotient} \ (p,q) \mapsto p/q$
- $\textbf{O} \quad \text{Left quotient } (p,q) \mapsto q \backslash p,$

that satisfy the following properties

$$\left(p/q\right)q=p \qquad q\left(q\backslash p\right)=p \qquad \left(pq\right)/q=p \quad p\backslash \left(pq\right)=q.$$

• A *loop* is a quasigroup with an identity element 1 (i.e. a unital quasigroup).

Definition

A quasigroup $\mathbb L$ is a set together with the following operations $\mathbb L\times\mathbb L\longrightarrow\mathbb L$

- $\textcircled{ Product } (p,q) \mapsto pq$
- $\textcircled{O} \ \text{Right quotient } (p,q) \mapsto p/q$
- $\textbf{O} \quad \text{Left quotient } (p,q) \mapsto q \backslash p,$

that satisfy the following properties

$$\left(p/q\right)q=p \qquad q\left(q\backslash p\right)=p \qquad \left(pq\right)/q=p \quad p\backslash \left(pq\right)=q.$$

- A *loop* is a quasigroup with an identity element 1 (i.e. a unital quasigroup).
- A smooth loop is a loop that is also a smooth manifold, with left and right product maps L_p and R_p being diffeomorphisms for every $p \in \mathbb{L}$.

Example

Any group is a loop, and conversely, any associative loop is a group.

Example

Any group is a loop, and conversely, any associative loop is a group.

Example

The set S^7 of unit octonions forms a non-associative loop. It satisfies additional identities, and is a *Moufang loop*.

Example

Any group is a loop, and conversely, any associative loop is a group.

Example

The set S^7 of unit octonions forms a non-associative loop. It satisfies additional identities, and is a *Moufang loop*.

Example

Consider the set P_n of positive-definite, symmetric real matrices. Then define a product $A \circ B$ of two such matrices given by

$$A \circ B = \left(AB^2A\right)^{\frac{1}{2}}.$$

Example

Any group is a loop, and conversely, any associative loop is a group.

Example

The set S^7 of unit octonions forms a non-associative loop. It satisfies additional identities, and is a *Moufang loop*.

Example

Consider the set P_n of positive-definite, symmetric real matrices. Then define a product $A \circ B$ of two such matrices given by

$$A \circ B = \left(AB^2A\right)^{\frac{1}{2}}.$$

This product defines a loop structure on P_n .

Example

Any group is a loop, and conversely, any associative loop is a group.

Example

The set S^7 of unit octonions forms a non-associative loop. It satisfies additional identities, and is a *Moufang loop*.

Example

Consider the set P_n of positive-definite, symmetric real matrices. Then define a product $A\circ B$ of two such matrices given by

$$A \circ B = \left(AB^2A\right)^{\frac{1}{2}}.$$

This product defines a loop structure on P_n . If n > 1, it is non-associative.

Definition

$$h(pq) = h'(p) h(q).$$
 (1)

Definition

A pseudoautomorphism of a smooth loop \mathbb{L} is a diffeomorphism $h: \mathbb{L} \longrightarrow \mathbb{L}$, such that there exists a diffeomorphism $h': \mathbb{L} \longrightarrow \mathbb{L}$, known as the partial pseudoautomorphism corresponding to h, such that for any $p, q \in \mathbb{L}$,

$$h(pq) = h'(p) h(q).$$
 (1)

• The element $h(1) \in \mathbb{L}$ is the *companion* of h', and $h = R_{h(1)} \circ h'$.

Definition

$$h(pq) = h'(p) h(q).$$
 (1)

- The element $h(1) \in \mathbb{L}$ is the *companion* of h', and $h = R_{h(1)} \circ h'$.
- We also see the following property of h' with respect to quotients: $h'\left(p/q\right)=h\left(p\right)/h\left(q\right).$

Definition

$$h(pq) = h'(p) h(q).$$
 (1)

- The element $h(1) \in \mathbb{L}$ is the *companion* of h', and $h = R_{h(1)} \circ h'$.
- We also see the following property of h' with respect to quotients: $h'\left(p/q\right)=h\left(p\right)/h\left(q\right).$
- The sets of pseudoautomorphisms Ψ and partial pseudoautomorphisms Ψ' are both Lie groups (at least for compact L they are finite-dimensional).

Definition

$$h(pq) = h'(p) h(q).$$
 (1)

- The element $h(1) \in \mathbb{L}$ is the *companion* of h', and $h = R_{h(1)} \circ h'$.
- We also see the following property of h' with respect to quotients: $h'\left(p/q\right)=h\left(p\right)/h\left(q\right).$
- The sets of pseudoautomorphisms Ψ and partial pseudoautomorphisms Ψ' are both Lie groups (at least for compact L they are finite-dimensional).
- We also see that the *automorphism* group of the loop \mathbb{L} is the subgroup $H \subset \Psi$ which is the stabilizer of $1 \in \mathbb{L}$.

 We can regard L as a set with the action of Ψ or with action of Ψ'. In latter case, denote the Ψ'-set by L'.

- We can regard \mathbb{L} as a set with the action of Ψ or with action of Ψ' . In latter case, denote the Ψ' -set by \mathbb{L}' .
- From (1), we can regard the loop product as a map $\mathbb{L}' \times \mathbb{L} \longrightarrow \mathbb{L}$.

- We can regard \mathbb{L} as a set with the action of Ψ or with action of Ψ' . In latter case, denote the Ψ' -set by \mathbb{L}' .
- From (1), we can regard the loop product as a map $\mathbb{L}' \times \mathbb{L} \longrightarrow \mathbb{L}$.

- We can regard L as a set with the action of Ψ or with action of Ψ'. In latter case, denote the Ψ'-set by L'.
- From (1), we can regard the loop product as a map $\mathbb{L}' \times \mathbb{L} \longrightarrow \mathbb{L}$.

Example

Suppose $\mathbb{L} = S^7$. In this case, $\Psi(S^7) \cong \text{Spin}(7)$ and $\Psi'(S^7) \cong SO(7)$. The automorphism group is G_2 . The action of SO(7) corresponds to the vector representation of Spin(7) and the 'full' action of Spin(7) corresponds to the spinor representation.

Tangent algebra

• Recall that for any $s \in \mathbb{L}$, we have the diffeomorphisms

$$\begin{aligned} R_s : \mathbb{L} \longrightarrow \mathbb{L} \\ q \longmapsto qs. \end{aligned}$$

Tangent algebra

• Recall that for any $s \in \mathbb{L}$, we have the diffeomorphisms

$$\begin{array}{c} R_s : \mathbb{L} \longrightarrow \mathbb{L} \\ q \longmapsto qs. \end{array}$$

• Given a tangent vector $\xi \in T_1 \mathbb{L}$, define the vector field $\rho(\xi)$ given by

$$\rho\left(\xi\right)_q = \left(R_q\right)_* \xi \tag{2}$$

at any $p \in \mathbb{L}$.

Tangent algebra

Definition

For any $\xi, \gamma \in T_1 \mathbb{L}$, the *p*-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$[\xi, \gamma]^{(p)} = -(R_p^{-1})_* [\rho(\xi), \rho(\gamma)]_p.$$
(3)

Tangent algebra

Definition

For any $\xi, \gamma \in T_1 \mathbb{L}$, the *p*-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$[\xi, \gamma]^{(p)} = -(R_p^{-1})_* [\rho(\xi), \rho(\gamma)]_p.$$
(3)

Definition

The vector space $T_1 \mathbb{L}$ together with the bracket $[\cdot, \cdot]^{(p)}$ is the *tangent algebra* $\mathfrak{l}^{(p)}$ of (\mathbb{L}, \circ_p) .

Tangent algebra

Definition

For any $\xi, \gamma \in T_1 \mathbb{L}$, the *p*-bracket $[\cdot, \cdot]^{(p)}$ is defined as

$$[\xi, \gamma]^{(p)} = -(R_p^{-1})_* [\rho(\xi), \rho(\gamma)]_p.$$
(3)

Definition

The vector space $T_1 \mathbb{L}$ together with the bracket $[\cdot, \cdot]^{(p)}$ is the *tangent algebra* $\mathfrak{l}^{(p)}$ of (\mathbb{L}, \circ_p) .

• Define $b: \mathbb{L} \longrightarrow \mathfrak{l} \otimes \Lambda^2 \mathfrak{l}^*$ given by $p \mapsto [\cdot, \cdot]^{(p)}$. Then, in general $db|_p \neq 0$. Let $a(\xi, \eta, \gamma) = d_{\rho(\gamma)}b(\xi, \eta)$.

• Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define $\theta_p \in \Omega^1(\mathfrak{l})$ via $\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$

• Given $p \in \mathbb{L}$ and and $\xi \in \mathfrak{l}$, define $\theta_p \in \Omega^1(\mathfrak{l})$ via $\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$

• Given
$$p \in \mathbb{L}$$
 and and $\xi \in \mathfrak{l}$, define $\theta_p \in \Omega^1(\mathfrak{l})$ via $\theta_p\left(\rho(\xi)_p\right) = \left(R_p^{-1}\right)_* \rho(\xi)_p = \xi.$

Theorem (SG'21)

Let $p \in \mathbb{L}$ and let $[\cdot, \cdot]^{(p)}$ be bracket on $\mathfrak{l}^{(p)}$. Then θ satisfies the following equation at p:

$$\left(d\theta\right)_p - \frac{1}{2} \left[\theta, \theta\right]^{(p)} = 0,\tag{4}$$

where $[\theta, \theta]^{(p)}$ is the bracket of \mathbb{L} -algebra-valued 1-forms such that for any $X, Y \in T_p \mathbb{L}$, $\frac{1}{2} [\theta, \theta]^{(p)} (X, Y) = [\theta(X), \theta(Y)]^{(p)}$.

• Given
$$p \in \mathbb{L}$$
 and and $\xi \in \mathfrak{l}$, define $\theta_p \in \Omega^1(\mathfrak{l})$ via $\theta_p\left(\rho\left(\xi\right)_p\right) = \left(R_p^{-1}\right)_* \rho\left(\xi\right)_p = \xi.$

Theorem (SG'21)

Let $p \in \mathbb{L}$ and let $[\cdot, \cdot]^{(p)}$ be bracket on $\mathfrak{l}^{(p)}$. Then θ satisfies the following equation at p:

$$\left(d\theta\right)_p - \frac{1}{2} \left[\theta, \theta\right]^{(p)} = 0,\tag{4}$$

where $[\theta, \theta]^{(p)}$ is the bracket of \mathbb{L} -algebra-valued 1-forms such that for any $X, Y \in T_p \mathbb{L}$, $\frac{1}{2} [\theta, \theta]^{(p)} (X, Y) = [\theta(X), \theta(Y)]^{(p)}$.

• From (4) we obtain a generalization of the Jacobi identity, known as the Akivis identity:

$$\operatorname{Jac}^{(p)}\left(\xi,\eta,\gamma\right) = a_p\left(\xi,\eta,\gamma\right) + a_p\left(\eta,\gamma,\xi\right) + a_p\left(\gamma,\xi,\eta\right).$$
(5)

• We can define exponential maps via integral curves of fundamental vector fields.

- We can define exponential maps via integral curves of fundamental vector fields.
- Let $\xi \in \mathfrak{l}$, if $\rho(\xi)$ is complete, define $\exp_s \xi = p_{\xi}(1) / s$, where $p_{\xi}(t)$ is the maximal integral curve of $\rho(\xi)$ with $p_{\xi}(0) = s$.

- We can define exponential maps via integral curves of fundamental vector fields.
- Let $\xi \in \mathfrak{l}$, if $\rho(\xi)$ is complete, define $\exp_s \xi = p_{\xi}(1) / s$, where $p_{\xi}(t)$ is the maximal integral curve of $\rho(\xi)$ with $p_{\xi}(0) = s$.
- If \mathbb{L} is compact, then any vector field is complete.

- We can define exponential maps via integral curves of fundamental vector fields.
- Let $\xi \in \mathfrak{l}$, if $\rho(\xi)$ is complete, define $\exp_s \xi = p_{\xi}(1) / s$, where $p_{\xi}(t)$ is the maximal integral curve of $\rho(\xi)$ with $p_{\xi}(0) = s$.
- If \mathbb{L} is compact, then any vector field is complete.
- If \mathbb{L} is non-compact, need power-associativity, so that powers of an element $p \in \mathbb{L}$ associate, then $p_{\xi}(nh) = p_{\xi}(h)^n$ can be defined unambiguously (Kuz'min'1971).

- We can define exponential maps via integral curves of fundamental vector fields.
- Let $\xi \in \mathfrak{l}$, if $\rho(\xi)$ is complete, define $\exp_s \xi = p_{\xi}(1) / s$, where $p_{\xi}(t)$ is the maximal integral curve of $\rho(\xi)$ with $p_{\xi}(0) = s$.
- If \mathbb{L} is compact, then any vector field is complete.
- If L is non-compact, need power-associativity, so that powers of an element p ∈ L associate, then p_ξ (nh) = p_ξ (h)ⁿ can be defined unambiguously (Kuz'min'1971).
- $\exp_s : \mathfrak{l} \longrightarrow \mathbb{L}$ is a local diffeomorphism from neighborhood of $0 \in \mathfrak{l}$ to a neighborhood of $1 \in \mathbb{L}$.

- We can define exponential maps via integral curves of fundamental vector fields.
- Let $\xi \in \mathfrak{l}$, if $\rho(\xi)$ is complete, define $\exp_s \xi = p_{\xi}(1) / s$, where $p_{\xi}(t)$ is the maximal integral curve of $\rho(\xi)$ with $p_{\xi}(0) = s$.
- If \mathbb{L} is compact, then any vector field is complete.
- If L is non-compact, need power-associativity, so that powers of an element p ∈ L associate, then p_ξ (nh) = p_ξ (h)ⁿ can be defined unambiguously (Kuz'min'1971).
- $\exp_s: \mathfrak{l} \longrightarrow \mathbb{L}$ is a local diffeomorphism from neighborhood of $0 \in \mathfrak{l}$ to a neighborhood of $1 \in \mathbb{L}$.
- Under additional assumptions on \mathbb{L} (left power-associative), \exp_s is independent on s.

• For a fixed $\xi\in\mathfrak{l}$ and $s\in\mathbb{L},$ consider the equation for I-valued quantity η

$$\frac{d\eta}{dt} = [\xi, \eta]^{\exp_s(t\xi)s} \,.$$

• For a fixed $\xi\in\mathfrak{l}$ and $s\in\mathbb{L},$ consider the equation for $\mathfrak{l}\text{-valued}$ quantity η

$$\frac{d\eta}{dt} = [\xi, \eta]^{\exp_s(t\xi)s} \,.$$

• This is a homogeneous linear first-order ODE, so for all $t \in I$ there exists an evolution operator $U_{\xi}^{(s)}(t) \in GL(\mathfrak{l})$, with $U_{\xi}^{(s)}(0) = \mathrm{id}_{\mathfrak{l}}$, such that

$$\eta(t) = U_{\xi}^{(s)}(t) \eta_0.$$
 (6)

• For a fixed $\xi\in\mathfrak{l}$ and $s\in\mathbb{L},$ consider the equation for $\mathfrak{l}\text{-valued}$ quantity η

$$\frac{d\eta}{dt} = [\xi, \eta]^{\exp_s(t\xi)s} \,.$$

• This is a homogeneous linear first-order ODE, so for all $t \in I$ there exists an evolution operator $U_{\xi}^{(s)}(t) \in GL(\mathfrak{l})$, with $U_{\xi}^{(s)}(0) = \mathrm{id}_{\mathfrak{l}}$, such that

$$\eta(t) = U_{\xi}^{(s)}(t) \eta_0.$$
 (6)

• In the Lie group setting, the bracket is constant, so in that case $U_{\xi}^{(s)}(t) = e^{\operatorname{ad}_{t\xi}} = \operatorname{Ad}_{\exp(t\xi)}$.

Loop bundles

 Let M be a smooth manifold with a Ψ-principal bundle P. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle P×_Ψ S, with sections being in an 1-1 correspondence with equivariant maps P → S. Define the following bundles:

Loop bundles

 Let M be a smooth manifold with a Ψ-principal bundle P. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle P×_Ψ S, with sections being in an 1-1 correspondence with equivariant maps P → S. Define the following bundles:

Loop bundles

Let M be a smooth manifold with a Ψ-principal bundle P. Recall that if S is a set with an action of Ψ on it, then we can define an associated bundle P×_Ψ S, with sections being in an 1-1 correspondence with equivariant maps P → S. Define the following bundles: (h ∈ Ψ, and L' is the set L equipped the action of Ψ').

Bundle		Equivariance property
\mathcal{P}	$k:\mathcal{P}\longrightarrow \Psi$	$k_{ph} = h^{-1}k_p$
$\mathcal{Q}' = \mathcal{P} imes_{\Psi'} \mathbb{L}'$	$q:\mathcal{P}\longrightarrow\mathbb{L}'$	$q_{ph} = (h')^{-1} q_p$
$\mathcal{Q} = \mathcal{P} imes_{\Psi} \mathbb{L}$	$r: \mathcal{P} \longrightarrow \mathbb{L}$	$r_{ph} = h^{-1} \left(r_p \right)$
$\mathcal{A}=\mathcal{P} imes_{\Psi'_*}\mathfrak{l}$	$\eta:\mathcal{P}\longrightarrow\mathfrak{l}$	$k_{ph} = h^{-1}k_p$ $q_{ph} = (h')^{-1}q_p$ $r_{ph} = h^{-1}(r_p)$ $\eta_{ph} = (h')_*^{-1}\eta_p$

• Suppose $A \in C^{\infty}(\mathcal{P}, \mathbb{L}')$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is $As \in C^{\infty}(\mathcal{P}, \mathbb{L})$.

- Suppose $A \in C^{\infty}(\mathcal{P}, \mathbb{L}')$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is $As \in C^{\infty}(\mathcal{P}, \mathbb{L})$.
- Conversely, if $r \in C^{\infty}(\mathcal{P}, \mathbb{L})$ is equivariant, we can write r = As, for equivariant $A = r/s \in C^{\infty}(\mathcal{P}, \mathbb{L}')$.

- Suppose $A \in C^{\infty}(\mathcal{P}, \mathbb{L}')$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is $As \in C^{\infty}(\mathcal{P}, \mathbb{L})$.
- Conversely, if $r \in C^{\infty}(\mathcal{P}, \mathbb{L})$ is equivariant, we can write r = As, for equivariant $A = r/s \in C^{\infty}(\mathcal{P}, \mathbb{L}')$.
- Choose a defining equivariant map $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$. The choice is arbitrary, but it allows to compare equivariant \mathbb{L} -valued maps.

- Suppose $A \in C^{\infty}(\mathcal{P}, \mathbb{L}')$ and $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$, then if both A and s are equivariant, so is $As \in C^{\infty}(\mathcal{P}, \mathbb{L})$.
- Conversely, if $r \in C^{\infty}(\mathcal{P}, \mathbb{L})$ is equivariant, we can write r = As, for equivariant $A = r/s \in C^{\infty}(\mathcal{P}, \mathbb{L}')$.
- Choose a defining equivariant map $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$. The choice is arbitrary, but it allows to compare equivariant \mathbb{L} -valued maps.
- Given s, easy to show that corresponding maps b_s and a_s are also equivariant.

Connections and Torsion

• Suppose the principal Ψ -bundle $\mathcal P$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega : T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form, where \mathfrak{p} is the Lie algebra of Ψ .

Connections and Torsion

 \bullet Suppose the principal $\Psi\mbox{-bundle}\ {\cal P}$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega : T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form, where \mathfrak{p} is the Lie algebra of Ψ .

• Recall that given an equivariant map $f:\mathcal{P}\longrightarrow S,$ the covariant derivative is defined as

$$d^{\omega}f := f_* \circ \operatorname{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{HP} \longrightarrow TS.$$

$$(7)$$

Connections and Torsion

 \bullet Suppose the principal $\Psi\mbox{-bundle}\ {\cal P}$ has a principal connection given by

$$T\mathcal{P} = \mathcal{HP} \oplus \mathcal{VP}$$

and let $\omega: T\mathcal{P} \longrightarrow \mathfrak{p}$ be the corresponding connection 1-form, where \mathfrak{p} is the Lie algebra of Ψ .

• Recall that given an equivariant map $f:\mathcal{P}\longrightarrow S,$ the covariant derivative is defined as

$$d^{\omega}f := f_* \circ \operatorname{proj}_{\mathcal{H}} : T\mathcal{P} \longrightarrow \mathcal{HP} \longrightarrow TS.$$
(7)

Equivalently,

$$d^{\omega}f = df + \omega \cdot f$$

where \cdot denotes the infinitesimal action of \mathfrak{p} on S.

• Let $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$ be equivariant and let ω be a connection on \mathcal{P} .

• Let $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$ be equivariant and let ω be a connection on \mathcal{P} .

• Let $s \in C^{\infty}(\mathcal{P}, \mathbb{L})$ be equivariant and let ω be a connection on \mathcal{P} .

Definition

The torsion $T^{(s,\omega)}$ of s and ω is a horizontal I-valued 1-form on $\mathcal P$ given by

$$T^{(s,\omega)} = s^* \theta \circ \operatorname{proj}_{\mathcal{H}} \tag{8}$$

Equivalently, at $p \in \mathcal{P}$, we have

$$T^{(s,\omega)}\Big|_p = \left(R_{s_p}^{-1}\right)_* d^\omega s|_p.$$
(9)

• Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.

- Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.
- Let us now switch perspective, and work in terms of sections of bundles.

- Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.
- Let us now switch perspective, and work in terms of sections of bundles.
- We will consider s to be a smooth section of the bundle Q, so that we will say $s \in \Gamma(Q)$, and will refer to it as the *defining section*.

- Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.
- Let us now switch perspective, and work in terms of sections of bundles.
- We will consider s to be a smooth section of the bundle Q, so that we will say $s \in \Gamma(Q)$, and will refer to it as the *defining section*.
- Also consider sections $A \in \Gamma(\mathcal{Q}')$, which admit the action of Ψ' .

- Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.
- Let us now switch perspective, and work in terms of sections of bundles.
- We will consider s to be a smooth section of the bundle Q, so that we will say $s \in \Gamma(Q)$, and will refer to it as the *defining section*.
- Also consider sections $A \in \Gamma(\mathcal{Q}')$, which admit the action of Ψ' .
- The product on elements of L' and L, then carries over to sections of bundles, so that we have a product Γ(Q') × Γ(Q) → Γ(Q).

- Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.
- Let us now switch perspective, and work in terms of sections of bundles.
- We will consider s to be a smooth section of the bundle Q, so that we will say $s \in \Gamma(Q)$, and will refer to it as the *defining section*.
- Also consider sections $A \in \Gamma(\mathcal{Q}')$, which admit the action of Ψ' .
- The product on elements of L' and L, then carries over to sections of bundles, so that we have a product Γ(Q') × Γ(Q) → Γ(Q).
- The connection ω on \mathcal{P} then induces connections on the associated bundles and correspondingly, covariant derivatives on sections of these bundles.

- Equivariant horizontal (i.e. *basic*) forms on \mathcal{P} give rise to sections of corresponding associated bundles over the base manifold M.
- Let us now switch perspective, and work in terms of sections of bundles.
- We will consider s to be a smooth section of the bundle Q, so that we will say $s \in \Gamma(Q)$, and will refer to it as the *defining section*.
- Also consider sections $A \in \Gamma(Q')$, which admit the action of Ψ' .
- The product on elements of L' and L, then carries over to sections of bundles, so that we have a product Γ(Q') × Γ(Q) → Γ(Q).
- The connection ω on \mathcal{P} then induces connections on the associated bundles and correspondingly, covariant derivatives on sections of these bundles.
- The torsion $T^{(s,\omega)}$, as defined earlier, was a horizontal and equivariant 1-form on \mathcal{P} with values in \mathfrak{l} , so it uniquely corresponds to a 1-form on M with values in the bundle \mathcal{A} , i.e., now we will consider $T^{(s,\omega)} \in \Omega^1(\mathcal{A})$.

Non-associative gauge theory

Definition

A non-associative gauge theory is defined by the following objects:

A smooth loop L with a finite-dimensional pseudoautomorphism Lie group Ψ and tangent algebra l at identity.

Definition

A non-associative gauge theory is defined by the following objects:

- A smooth loop L with a finite-dimensional pseudoautomorphism Lie group Ψ and tangent algebra l at identity.
- A smooth manifold M with a principal Ψ-bundle P, and associated bundles Q, Q', A, with fibers L, L', and I, respectively.

Definition

A non-associative gauge theory is defined by the following objects:

- A smooth loop L with a finite-dimensional pseudoautomorphism Lie group Ψ and tangent algebra l at identity.
- A smooth manifold M with a principal Ψ-bundle P, and associated bundles Q, Q', A, with fibers L, L', and I, respectively.
- A configuration (s, ω), where s ∈ Γ (Q) is a defining section and ω is a connection on P. Each configuration carries torsion T^(s,ω) ∈ Ω¹ (A).

Definition

A non-associative gauge theory is defined by the following objects:

- A smooth loop L with a finite-dimensional pseudoautomorphism Lie group Ψ and tangent algebra l at identity.
- A smooth manifold M with a principal Ψ-bundle P, and associated bundles Q, Q', A, with fibers L, L', and I, respectively.
- A configuration (s, ω), where s ∈ Γ (Q) is a defining section and ω is a connection on P. Each configuration carries torsion T^(s,ω) ∈ Ω¹ (A).

Definition

A non-associative gauge theory is defined by the following objects:

- A smooth loop L with a finite-dimensional pseudoautomorphism Lie group Ψ and tangent algebra l at identity.
- A smooth manifold M with a principal Ψ-bundle P, and associated bundles Q, Q', A, with fibers L, L', and I, respectively.
- A configuration (s, ω), where s ∈ Γ (Q) is a defining section and ω is a connection on P. Each configuration carries torsion T^(s,ω) ∈ Ω¹ (A).

Definition

A loop gauge transformation is a transformation of the defining section s by left multiplication by a section $A \in \Gamma(\mathcal{Q}')$, such that $s \mapsto As$, and hence $T^{(s,\omega)} \mapsto T^{(As,\omega)}$.

Lemma (SG'23)

Suppose $T^{(s,\omega)}$ is the torsion with respect to a defining section $s \in \Gamma(Q)$ and a connection ω . Suppose $A_t = \exp_s(t\xi) \in \Gamma(Q')$, then

$$\frac{d}{dt}T^{(A_ts,\omega)} = \left[\xi, T^{(A_ts,\omega)}\right]^{(A_ts)} + d^{\omega}\xi.$$
(10)

Lemma (SG'23)

Suppose $T^{(s,\omega)}$ is the torsion with respect to a defining section $s \in \Gamma(Q)$ and a connection ω . Suppose $A_t = \exp_s(t\xi) \in \Gamma(Q')$, then

$$\frac{d}{dt}T^{(A_ts,\omega)} = \left[\xi, T^{(A_ts,\omega)}\right]^{(A_ts)} + d^{\omega}\xi.$$
(10)

In particular, we get

$$T^{((\exp_{s} t\xi)s,\omega)} = U_{\xi}^{(s)}(t) T^{(s,\omega)}$$

$$+ U_{\xi}^{(s)}(t) \left(\int_{0}^{1} U_{\xi}^{(s)}(\tau)^{-1} d\tau \right) d^{\omega} \xi.$$
(11)

Energy functional

• Suppose M is compact with a metric g. Define the functional

$$\mathcal{E}_{\omega}\left(s\right) = \int_{M} \left|T^{\left(s,\omega\right)}\right|^{2} \operatorname{vol}_{g},\tag{12}$$

where $|\cdot|$ is a combination of the metric g on M and an inner product on sections of $\mathcal{A}.$

Energy functional

• Suppose M is compact with a metric g. Define the functional

$$\mathcal{E}_{\omega}\left(s\right) = \int_{M} \left|T^{\left(s,\omega\right)}\right|^{2} \operatorname{vol}_{g},\tag{12}$$

where $|\cdot|$ is a combination of the metric g on M and an inner product on sections of $\mathcal{A}.$

Energy functional

• Suppose M is compact with a metric g. Define the functional

$$\mathcal{E}_{\omega}\left(s\right) = \int_{M} \left|T^{\left(s,\omega\right)}\right|^{2} \operatorname{vol}_{g},\tag{12}$$

where $|\cdot|$ is a combination of the metric g on M and an inner product on sections of $\mathcal{A}.$

Theorem (SG'21)

Suppose \mathbb{L} is a semisimple Moufang loop, and suppose the inner product on \mathcal{A} is given by the Killing form, then the critical points of the functional (12) with respect to deformations of the defining section s are those for which

$$(d^{\omega})^* T^{(s,\omega)} = 0.$$
(13)

Suppose \mathbb{L} is a smooth compact loop with tangent algebra \mathfrak{l} and pseudoautomorphism group Ψ .

Suppose \mathbb{L} is a smooth compact loop with tangent algebra \mathfrak{l} and pseudoautomorphism group Ψ . Let (M,g) be a closed, smooth Riemannian manifold of dimension $n \geq 2$, and let \mathcal{P} be a Ψ -principal bundle over M with a smooth connection ω .

Suppose \mathbb{L} is a smooth compact loop with tangent algebra \mathfrak{l} and pseudoautomorphism group Ψ . Let (M,g) be a closed, smooth Riemannian manifold of dimension $n \geq 2$, and let \mathcal{P} be a Ψ -principal bundle over M with a smooth connection ω . Suppose $k \geq 0$ and $r \geq 0$ such that (k-1) $r \geq n$. Then, there exist constants $\delta \in (0,1]$ and $K \in (0,\infty)$, such that if $s \in \Gamma(\mathcal{Q})$ is a smooth defining section for which

$$\left\|T^{(s,\omega)}\right\|_{W^{k-1,r}} < \delta,$$

Suppose \mathbb{L} is a smooth compact loop with tangent algebra \mathfrak{l} and pseudoautomorphism group Ψ . Let (M,g) be a closed, smooth Riemannian manifold of dimension $n \geq 2$, and let \mathcal{P} be a Ψ -principal bundle over M with a smooth connection ω . Suppose $k \geq 0$ and $r \geq 0$ such that (k-1) $r \geq n$. Then, there exist constants $\delta \in (0,1]$ and $K \in (0,\infty)$, such that if $s \in \Gamma(\mathcal{Q})$ is a smooth defining section for which

$$\left\|T^{(s,\omega)}\right\|_{W^{k-1,r}} < \delta,$$

then there exists a smooth $A \in \Gamma(\mathcal{Q}')$, such that

$$(d^{\omega})^* T^{(As,\omega)} = 0$$

Suppose \mathbb{L} is a smooth compact loop with tangent algebra \mathfrak{l} and pseudoautomorphism group Ψ . Let (M,g) be a closed, smooth Riemannian manifold of dimension $n \geq 2$, and let \mathcal{P} be a Ψ -principal bundle over M with a smooth connection ω . Suppose $k \geq 0$ and $r \geq 0$ such that (k-1) $r \geq n$. Then, there exist constants $\delta \in (0,1]$ and $K \in (0,\infty)$, such that if $s \in \Gamma(\mathcal{Q})$ is a smooth defining section for which

$$\left\|T^{(s,\omega)}\right\|_{W^{k-1,r}} < \delta,$$

then there exists a smooth $A \in \Gamma \left(\mathcal{Q}' \right)$, such that

$$(d^{\omega})^* T^{(As,\omega)} = 0$$

and

$$\left\| T^{(As,\omega)} \right\|_{W^{k-1,r}} < K \left\| T^{(s,\omega)} \right\|_{W^{k-1,r}} \left(1 + \left\| T^{(s,\omega)} \right\|_{W^{k-1,r}}^{k-1} \right).$$
(14)
Sergey Grigorian Non-associative gauge theory 21 / 28

Outline of the proof

• The idea is to use the Implicit Function Theorem for Banach Spaces.

Outline of the proof

• The idea is to use the Implicit Function Theorem for Banach Spaces. • Let $K = \ker \Delta^{(\omega)}$, then restricting $\xi \in K^{\perp}$, define

$$G: W^{(k-1),r}\left(T^*M \otimes \mathcal{A}\right) \times \left(K^{\perp} \cap W^{k,r}\left(\mathcal{A}\right)\right) \longrightarrow K^{\perp} \cap W^{(k-2),r}_{A_1}\left(\mathcal{A}\right).$$

by

$$G(a,\xi) = (d^{\omega})^* \left(U_{\xi}^{(s)} \left(a - T^{(s,\omega)} \right) + T^{((\exp_s \xi)s,\omega)} \right)$$

= $(d^{\omega})^* \left(U_{\xi}^{(s)} a + U_{\xi}^{(s)} \left(\int_0^1 U_{\xi}^{(s)} (\tau)^{-1} d\tau \right) d^{\omega} \xi \right)$ (15)

$$DG|_{(0,0)}(b,\eta) = (d^{\omega})^* b + (d^{\omega})^* d^{\omega} \eta.$$

$$DG|_{(0,0)}(b,\eta) = (d^{\omega})^* b + (d^{\omega})^* d^{\omega} \eta.$$

• IFT gives us a unique smooth map $\xi(a)$ for any $\|a\|_{W^{(k-1),r}} < \delta$, such that $G(a,\xi(a)) = 0$.

$$DG|_{(0,0)}(b,\eta) = (d^{\omega})^* b + (d^{\omega})^* d^{\omega} \eta.$$

- IFT gives us a unique smooth map $\xi(a)$ for any $\|a\|_{W^{(k-1),r}} < \delta$, such that $G(a,\xi(a)) = 0$.
- Setting $a = T^{(s,\omega)}$, gives us the desired result with $A = \exp_s(\xi)$.

$$DG|_{(0,0)}(b,\eta) = (d^{\omega})^* b + (d^{\omega})^* d^{\omega} \eta.$$

- IFT gives us a unique smooth map $\xi(a)$ for any $\|a\|_{W^{(k-1),r}} < \delta$, such that $G(a,\xi(a)) = 0$.
- Setting $a = T^{(s,\omega)}$, gives us the desired result with $A = \exp_s(\xi)$.
- The smoothness of A follows by elliptic regularity.

• Consider $\mathbb{L=}S^{7}$ - the Moufang loop of unit octonions. Then we have the following correspondence:

• Consider $\mathbb{L=}S^{7}$ - the Moufang loop of unit octonions. Then we have the following correspondence:

• Consider $\mathbb{L}=\!S^7$ - the Moufang loop of unit octonions. Then we have the following correspondence:

Object	Loops	Octonions
Pseudoautomorphism group	Ψ	$\operatorname{Spin}(7)$
Partial pseudoautomorphism group	Ψ'	$SO\left(7 ight)$
Automorphism group	H	G_2
Lie algebra of Ψ	p	$\mathfrak{so}(7)$
Loop with full action of Ψ	L	$U\mathbb{O}\subset S_7$
Loop with partial action of Ψ	\mathbb{L}'	$U\mathbb{O}' \subset V_1 \oplus V_7$
Tangent algebra	t	$\operatorname{Im} \mathbb{O} \cong V_7 \cong \mathbb{R}^7$

• Consider $\mathbb{L=}S^{7}$ - the Moufang loop of unit octonions. Then we have the following correspondence:

Object	Loops	Octonions
Pseudoautomorphism group	Ψ	$\operatorname{Spin}(7)$
Partial pseudoautomorphism group	Ψ'	$SO\left(7 ight)$
Automorphism group	H	G_2
Lie algebra of Ψ	p	$\mathfrak{so}(7)$
Loop with full action of Ψ	L	$U\mathbb{O}\subset S_7$
Loop with partial action of Ψ	\mathbb{L}'	$U\mathbb{O}' \subset V_1 \oplus V_7$
Tangent algebra	ſ	$\operatorname{Im} \mathbb{O} \cong V_7 \cong \mathbb{R}^7$

• Here S_7 and V_7 are the 8-dim "spinor" and 7-dimensional "vector" representations of Spin (7), respectively.

 \bullet Suppose M is 7-dimensional compact smooth manifold that admits $G_2\mbox{-structures}.$ Then

 \bullet Suppose M is 7-dimensional compact smooth manifold that admits $G_2\mbox{-structures}.$ Then

- Suppose M is 7-dimensional compact smooth manifold that admits G_2 -structures. Then Loop bundles G_2 -geometry \mathcal{P} Spin structure: principal Spin (7)-bundle over M $\mathcal{Q}' = \mathcal{P} \times_{\Psi'} \mathbb{L}'$ Unit octonion bundle $U \mathbb{O} M \subset \Omega^0(M) \oplus TM$
 - $\begin{array}{c|c} \mathcal{Q} = \mathcal{P} \times_{\Psi} \mathbb{L} & \text{Unit spinor bundle } US \\ \mathcal{A} = \mathcal{P} \times_{\Psi'} \mathfrak{l} & \text{Bundle of imaginary octonions: } TM \end{array}$

• A $G_2\text{-structure }\varphi_s$ may be defined by a unit spinor, i.e. a section of $s\in\mathcal{Q}.$

- A $G_2\text{-structure }\varphi_s$ may be defined by a unit spinor, i.e. a section of $s\in \mathcal{Q}.$
- Then, the torsion $T^{(\xi)}$ of φ_{ξ} is given by

$$\nabla_X^S \xi = T_X^{(\xi)} \cdot \xi, \tag{16}$$

- A G_2 -structure φ_s may be defined by a unit spinor, i.e. a section of $s \in Q$.
- Then, the torsion $T^{(\xi)}$ of φ_{ξ} is given by

$$\nabla_X^S \xi = T_X^{(\xi)} \cdot \xi, \tag{16}$$

• We see that the torsion $T^{(\xi)}$ of the G_2 -structure φ_{ξ} precisely corresponds to the torsion $T^{(\xi,\nabla)}$ of the section ξ with respect to the Levi-Civita connection ∇ .

- A $G_2\text{-structure }\varphi_s$ may be defined by a unit spinor, i.e. a section of $s\in\mathcal{Q}.$
- Then, the torsion $T^{(\xi)}$ of φ_{ξ} is given by

$$\nabla_X^S \xi = T_X^{(\xi)} \cdot \xi, \tag{16}$$

- We see that the torsion $T^{(\xi)}$ of the G_2 -structure φ_{ξ} precisely corresponds to the torsion $T^{(\xi,\nabla)}$ of the section ξ with respect to the Levi-Civita connection ∇ .
- Given a unit octonion section $A \in \Gamma(U \mathbb{O}M)$, $A \cdot \xi$ is again a unit spinor which defines a G_2 -structure $\varphi_{A \cdot \xi}$.

- A $G_2\text{-structure }\varphi_s$ may be defined by a unit spinor, i.e. a section of $s\in \mathcal{Q}.$
- Then, the torsion $T^{(\xi)}$ of φ_{ξ} is given by

$$\nabla_X^S \xi = T_X^{(\xi)} \cdot \xi, \tag{16}$$

- We see that the torsion $T^{(\xi)}$ of the G_2 -structure φ_{ξ} precisely corresponds to the torsion $T^{(\xi, \nabla)}$ of the section ξ with respect to the Levi-Civita connection ∇ .
- Given a unit octonion section $A \in \Gamma(U \mathbb{O}M)$, $A \cdot \xi$ is again a unit spinor which defines a G_2 -structure $\varphi_{A \cdot \xi}$.
- Considering both A and ξ as octonions in $U\mathbb{O}'$ and $U\mathbb{O}$, respectively, this is just octonion multiplication $A\xi$.

Suppose M is a closed 7-dimensional manifold with a smooth G_2 -structure φ with torsion T with respect to the Levi-Civita connection ∇ . Also, suppose k is a positive integer and p is a positive real number such that kp > 7. Then, there exist constants $\delta \in (0,1]$ and $K \in (0,\infty)$, such that if T satisfies

 $\|T\|_{W^{k,p}} < \delta,$

then there exists a smooth section $V \in \Gamma(U \mathbb{O}M)$, such that

 $\operatorname{div} T^{(V)} = 0$

and

$$\left\| T^{(V)} \right\|_{W^{k,p}} < K \left\| T \right\|_{W^{k,p}} \left(1 + \|T\|_{W^{k,p}}^k \right).$$
(17)

• If we choose p = 2 to work with Hilbert spaces, then for a smooth section V, we need $k \ge 4$, so the condition on T is to be sufficiently small in the $W^{4,2}$ -norm.

Sergey Grigorian

 These ideas show that some well-known results and techniques from classical gauge theory can be reinterpreted and adapted in a non-associative setting.

- These ideas show that some well-known results and techniques from classical gauge theory can be reinterpreted and adapted in a non-associative setting.
- It will be interesting to see what other gauge theory concepts have an analog, since any such advances will give immediate results in G_2 -geometry.

- These ideas show that some well-known results and techniques from classical gauge theory can be reinterpreted and adapted in a non-associative setting.
- It will be interesting to see what other gauge theory concepts have an analog, since any such advances will give immediate results in G_2 -geometry.
- It is also interesting to see what other structures in differential geometry can be obtained by looking at loop bundles and their corresponding gauge theories.

- These ideas show that some well-known results and techniques from classical gauge theory can be reinterpreted and adapted in a non-associative setting.
- It will be interesting to see what other gauge theory concepts have an analog, since any such advances will give immediate results in G_2 -geometry.
- It is also interesting to see what other structures in differential geometry can be obtained by looking at loop bundles and their corresponding gauge theories.
- Aspects of the presented theory may also carry over to homogeneous or parallelizable manifolds.