Cohomogeneity one examples of deformed instantons

Udhav Fowdar

Unicamp
Workshop BRIDGES: Special geometries and gauge theories

June 22, 2023

Plan of talk

Words in the title:

- deformed instantons: special connections on complex line bundle $L \rightarrow M$: where M is either Kähler, G_{2} or $\operatorname{Spin}(7)$ manifold
- Nomenclature: Deformed HYM connections, deformed $G_{2} / \operatorname{Spin}(7)$ instantons or deformed Donaldon-Thomas connections
- Cohomogeneity one: M / G is 1-dimensional
- Background on G_{2} geometry
- What are deformed instantons? Where they come from?
- On cohomogeneity one gauge theory
- Examples of $\mathrm{d} G_{2}$-instantons
- Examples of $\mathrm{d} \operatorname{Spin}(7)$-instantons and dHYM connections

Plan of talk

Words in the title:

- deformed instantons: special connections on complex line bundle $L \rightarrow M$: where M is either Kähler, G_{2} or $\operatorname{Spin}(7)$ manifold
- Nomenclature: Deformed HYM connections, deformed $G_{2} / \operatorname{Spin}(7)$ instantons or deformed Donaldon-Thomas connections
- Cohomogeneity one: M / G is 1-dimensional
- Background on G_{2} geometry
- What are deformed instantons? Where they come from?
- On cohomogeneity one gauge theory
- Examples of $d G_{2}$-instantons
- Examples of $\mathrm{d} \operatorname{Spin}(7)$-instantons and dHYM connections

Plan of talk

Words in the title:

- deformed instantons: special connections on complex line bundle $L \rightarrow M$: where M is either Kähler, G_{2} or $\operatorname{Spin}(7)$ manifold
- Nomenclature: Deformed HYM connections, deformed $G_{2} / \operatorname{Spin}(7)$ instantons or deformed Donaldon-Thomas connections
- Cohomogeneity one: M / G is 1-dimensional
- Background on G_{2} geometry
- What are deformed instantons? Where they come from?
- On cohomogeneity one gauge theory
- Examples of $d G_{2}$-instantons
- Examples of $\mathrm{d} \operatorname{Spin}(7)$-instantons and dHYM connections

Plan of talk

Words in the title:

- deformed instantons: special connections on complex line bundle $L \rightarrow M$: where M is either Kähler, G_{2} or $\operatorname{Spin}(7)$ manifold
- Nomenclature: Deformed HYM connections, deformed $G_{2} / \operatorname{Spin}(7)$ instantons or deformed Donaldon-Thomas connections
- Cohomogeneity one: M / G is 1-dimensional

Plan:

- Background on G_{2} geometry
- What are deformed instantons? Where they come from?
- On cohomogeneity one gauge theory
- Examples of $d G_{2}$-instantons
- Examples of $\mathrm{d} \operatorname{Spin}(7)$-instantons and dHYM connections

G_{2}-structures on 7-manifolds

- A G_{2}-structure on M^{7} is the data of a 3-form φ such that at each $p \in M$ $\exists\left\{x_{i}\right\}_{i=1}^{7}$ such that

$$
\begin{aligned}
\left.\varphi\right|_{p}= & d x_{123}+d x_{145}+d x_{167}+d x_{246}-d x_{257}-d x_{347}-d x_{356} \\
= & d x_{1} \wedge\left(d x_{23}+d x_{45}+d x_{67}\right) \\
& +\operatorname{Re}\left(\left(d x_{2}+i d x_{3}\right) \wedge\left(d x_{4}+i d x_{5}\right) \wedge\left(d x_{6}+i d x_{7}\right)\right)
\end{aligned}
$$

- $G_{2} \subset S O(7) \Rightarrow \varphi$ determines a metric and orientation. Explicitly by

$$
\left.\left.\frac{1}{6}(X\lrcorner \varphi\right) \wedge(Y\lrcorner \varphi\right) \wedge \varphi=g(X, Y) \text { vol }
$$

- $\left(M^{7}, \varphi\right)$ "is" G_{2} manifold $\Leftrightarrow \nabla \varphi=0 \Leftrightarrow d \varphi=0=d * \varphi$ (49 PDEs!)
- Trivial example: If (P^{6}, h, ω, Ω) is $C Y$ then $M^{7}=S_{t}^{1} \times P^{6}$ is G_{2} with

G_{2}-structures on 7-manifolds

- A G_{2}-structure on M^{7} is the data of a 3-form φ such that at each $p \in M$ $\exists\left\{x_{i}\right\}_{i=1}^{7}$ such that

$$
\begin{aligned}
\left.\varphi\right|_{p}= & d x_{123}+d x_{145}+d x_{167}+d x_{246}-d x_{257}-d x_{347}-d x_{356} \\
= & d x_{1} \wedge\left(d x_{23}+d x_{45}+d x_{67}\right) \\
& +\operatorname{Re}\left(\left(d x_{2}+i d x_{3}\right) \wedge\left(d x_{4}+i d x_{5}\right) \wedge\left(d x_{6}+i d x_{7}\right)\right)
\end{aligned}
$$

- $G_{2} \subset S O(7) \Rightarrow \varphi$ determines a metric and orientation. Explicitly by $\left.\frac{1}{6}(X\lrcorner \varphi\right) \wedge(Y \perp \varphi) \wedge \varphi=g(X, Y)$ vol
- $\left(M^{7}, \varphi\right)$ "is" G_{2} manifold $\Leftrightarrow \nabla \varphi=0 \Leftrightarrow d \varphi=0=d * \varphi$ (49 PDEs!)
- Trivial example: If $\left(P^{6}, h, \omega, \Omega\right)$ is $C Y$ then $M^{7}=S_{t}^{1} \times P^{6}$ is G_{2} with

G_{2}-structures on 7-manifolds

- A G_{2}-structure on M^{7} is the data of a 3-form φ such that at each $p \in M$ $\exists\left\{x_{i}\right\}_{i=1}^{7}$ such that

$$
\begin{aligned}
\left.\varphi\right|_{p}= & d x_{123}+d x_{145}+d x_{167}+d x_{246}-d x_{257}-d x_{347}-d x_{356} \\
= & d x_{1} \wedge\left(d x_{23}+d x_{45}+d x_{67}\right) \\
& +\operatorname{Re}\left(\left(d x_{2}+i d x_{3}\right) \wedge\left(d x_{4}+i d x_{5}\right) \wedge\left(d x_{6}+i d x_{7}\right)\right)
\end{aligned}
$$

- $G_{2} \subset S O(7) \Rightarrow \varphi$ determines a metric and orientation. Explicitly by

$$
\left.\left.\frac{1}{6}(X\lrcorner \varphi\right) \wedge(Y\lrcorner \varphi\right) \wedge \varphi=g(X, Y) \mathrm{vol}
$$

- $\left(M^{7}, \varphi\right)$ "is" G_{2} manifold $\Leftrightarrow \nabla \varphi=0 \Leftrightarrow d \varphi=0=d * \varphi$ (49 PDEs!)
- Trivial example: If $\left(P^{6}, h, \omega, \Omega\right)$ is CY then $M^{7}=S_{t}^{1} \times P^{6}$ is G_{2} with

G_{2}-structures on 7-manifolds

- A G_{2}-structure on M^{7} is the data of a 3-form φ such that at each $p \in M$ $\exists\left\{x_{i}\right\}_{i=1}^{7}$ such that

$$
\begin{aligned}
\left.\varphi\right|_{p}= & d x_{123}+d x_{145}+d x_{167}+d x_{246}-d x_{257}-d x_{347}-d x_{356} \\
= & d x_{1} \wedge\left(d x_{23}+d x_{45}+d x_{67}\right) \\
& +\operatorname{Re}\left(\left(d x_{2}+i d x_{3}\right) \wedge\left(d x_{4}+i d x_{5}\right) \wedge\left(d x_{6}+i d x_{7}\right)\right)
\end{aligned}
$$

- $G_{2} \subset S O(7) \Rightarrow \varphi$ determines a metric and orientation. Explicitly by

$$
\left.\left.\frac{1}{6}(X\lrcorner \varphi\right) \wedge(Y\lrcorner \varphi\right) \wedge \varphi=g(X, Y) \mathrm{vol}
$$

- $\left(M^{7}, \varphi\right)$ "is" G_{2} manifold $\Leftrightarrow \nabla \varphi=0 \Leftrightarrow d \varphi=0=d * \varphi$ (49 PDEs!)

G_{2}-structures on 7-manifolds

- A G_{2}-structure on M^{7} is the data of a 3 -form φ such that at each $p \in M$ $\exists\left\{x_{i}\right\}_{i=1}^{7}$ such that

$$
\begin{aligned}
\left.\varphi\right|_{p}= & d x_{123}+d x_{145}+d x_{167}+d x_{246}-d x_{257}-d x_{347}-d x_{356} \\
= & d x_{1} \wedge\left(d x_{23}+d x_{45}+d x_{67}\right) \\
& +\operatorname{Re}\left(\left(d x_{2}+i d x_{3}\right) \wedge\left(d x_{4}+i d x_{5}\right) \wedge\left(d x_{6}+i d x_{7}\right)\right)
\end{aligned}
$$

- $G_{2} \subset S O(7) \Rightarrow \varphi$ determines a metric and orientation. Explicitly by

$$
\left.\left.\frac{1}{6}(X\lrcorner \varphi\right) \wedge(Y\lrcorner \varphi\right) \wedge \varphi=g(X, Y) \mathrm{vol}
$$

- $\left(M^{7}, \varphi\right)$ "is" G_{2} manifold $\Leftrightarrow \nabla \varphi=0 \Leftrightarrow d \varphi=0=d * \varphi$ (49 PDEs!)
- Trivial example: If $\left(P^{6}, h, \omega, \Omega\right)$ is CY then $M^{7}=S_{t}^{1} \times P^{6}$ is G_{2} with $\varphi=d t \wedge \omega+\operatorname{Re}(\Omega)$ Hence $g=d t^{2}+h$ and $* \varphi=\frac{1}{2} \omega^{2}-d t \wedge \operatorname{Im}(\Omega)$.

Why care about G_{2}-manifolds?

(1) Admits a parallel spinor $\Rightarrow \operatorname{Ric}(g)=0: M^{7}$ is an Einstein manifold
(2) Calibrated geometry

Definition

A k-form η is a calibration on (M, g) if $d \eta=0$ and $\eta\left(e_{1}, \ldots e_{k}\right) \leq 1 \forall e_{i}$ st $\mid e_{i} \|_{g}=1$

If $L^{k} \subset M$ st $\left.\eta\right|_{L}=\operatorname{vol}_{L}$ then L is calibrated submanifold. Suppose L is cpt calibrated and $\partial N^{k+1}=L \cup \overline{L^{\prime}}$ then

$$
\operatorname{Vol}(L)=\int_{L} \eta=\int_{L^{\prime}} \eta \leq \operatorname{Vol}\left(L^{\prime}\right) .
$$

L is minimal k-submanifold in homology class! And L is minimiser! On $\left(M^{7}, \varphi\right) G_{2}$-manifold: calibrated by $\varphi(* \varphi)$ means $L^{3(4)}$ is (co)-associative. On $\left(M^{2 n}, \omega, \Omega\right) C Y$-fold: calibrated by ω^{k} / k ! means $L^{2 k}$ complex sub-mfd, calibrated by $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ means L is special Lagrangian

Why care about G_{2}-manifolds?

(1) Admits a parallel spinor $\Rightarrow \operatorname{Ric}(g)=0: M^{7}$ is an Einstein manifold
(2) Calibrated geometry

Definition

A k-form η is a calibration on (M, g) if $d \eta=0$ and $\eta\left(e_{1}, . . e_{k}\right) \leq 1 \forall e_{i}$ st $\left\|e_{i}\right\|_{g}=1$.

If $L^{k} \subset M$ st $\left.\eta\right|_{L}=\operatorname{vol}_{L}$ then L is calibrated submanifold. Suppose L is cpt calibrated and $\partial N^{k+1}=L \cup \overline{L^{\prime}}$ then

L is minimal k-submanifold in homology class! And L is minimiser! On $\left(M^{7}, \varphi\right) G_{2}$-manifold: calibrated by $\varphi(* \varphi)$ means $L^{3(4)}$ is (co)-associative. On ($M^{2 n}, \omega, \Omega$) CY n-fold: calibrated by $\omega^{k} / k!$ means $L^{2 k}$ complex sub-mfd, calibrated by $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ means L is special Lagrangian

Why care about G_{2}-manifolds?

(1) Admits a parallel spinor $\Rightarrow \operatorname{Ric}(g)=0: M^{7}$ is an Einstein manifold
(2) Calibrated geometry

Definition

A k-form η is a calibration on (M, g) if $d \eta=0$ and $\eta\left(e_{1}, . . e_{k}\right) \leq 1 \forall e_{i}$ st $\left\|e_{i}\right\|_{g}=1$.

If $L^{k} \subset M$ st $\left.\eta\right|_{L}=\operatorname{vol}_{L}$ then L is calibrated submanifold.
cpt calibrated and $\partial N^{k+1}=L \cup \overline{L^{\prime}}$ then

L is minimal k-submanifold in homology class! And L is minimiser! On $\left(M^{7}, \varphi\right) G_{2}$-manifold: calibrated by $\varphi(* \varphi)$ means $L^{3(4)}$ is (co)-associative. On $\left(M^{2 n}, \omega, \Omega\right) C Y n$-fold: calibrated by $\omega^{k} / k!$ means $L^{2 k}$ complex sub-mfd, calibrated by $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ means L is special Lagrangian

Why care about G_{2}-manifolds?

(1) Admits a parallel spinor $\Rightarrow \operatorname{Ric}(g)=0: M^{7}$ is an Einstein manifold
(2) Calibrated geometry

Definition

A k-form η is a calibration on (M, g) if $d \eta=0$ and $\eta\left(e_{1}, . . e_{k}\right) \leq 1 \forall e_{i}$ st $\left\|e_{i}\right\|_{g}=1$.

If $L^{k} \subset M$ st $\left.\eta\right|_{L}=\operatorname{vol}_{L}$ then L is calibrated submanifold. Suppose L is cpt calibrated and $\partial N^{k+1}=L \cup \overline{L^{\prime}}$ then

$$
\operatorname{Vol}(L)=\int_{L} \eta=\int_{L^{\prime}} \eta \leq \operatorname{Vol}\left(L^{\prime}\right)
$$

Why care about G_{2}-manifolds?

(1) Admits a parallel spinor $\Rightarrow \operatorname{Ric}(g)=0: M^{7}$ is an Einstein manifold
(2) Calibrated geometry

Definition

A k-form η is a calibration on (M, g) if $d \eta=0$ and $\eta\left(e_{1}, . . e_{k}\right) \leq 1 \forall e_{i}$ st $\left\|e_{i}\right\|_{g}=1$.

If $L^{k} \subset M$ st $\left.\eta\right|_{L}=\operatorname{vol}_{L}$ then L is calibrated submanifold. Suppose L is cpt calibrated and $\partial N^{k+1}=L \cup \overline{L^{\prime}}$ then

$$
\operatorname{Vol}(L)=\int_{L} \eta=\int_{L^{\prime}} \eta \leq \operatorname{Vol}\left(L^{\prime}\right)
$$

L is minimal k-submanifold in homology class! And L is minimiser!

Why care about G_{2}-manifolds?

(1) Admits a parallel spinor $\Rightarrow \operatorname{Ric}(g)=0: M^{7}$ is an Einstein manifold
(2) Calibrated geometry

Definition

A k-form η is a calibration on (M, g) if $d \eta=0$ and $\eta\left(e_{1}, . . e_{k}\right) \leq 1 \forall e_{i}$ st $\left\|e_{i}\right\|_{g}=1$.

If $L^{k} \subset M$ st $\left.\eta\right|_{L}=\operatorname{vol}_{L}$ then L is calibrated submanifold. Suppose L is cpt calibrated and $\partial N^{k+1}=L \cup \overline{L^{\prime}}$ then

$$
\operatorname{Vol}(L)=\int_{L} \eta=\int_{L^{\prime}} \eta \leq \operatorname{Vol}\left(L^{\prime}\right)
$$

L is minimal k-submanifold in homology class! And L is minimiser! On $\left(M^{7}, \varphi\right) G_{2}$-manifold: calibrated by $\varphi(* \varphi)$ means $L^{3(4)}$ is (co)-associative. On ($M^{2 n}, \omega, \Omega$) CY n-fold: calibrated by ω^{k} / k ! means $L^{2 k}$ complex sub-mfd, calibrated by $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ means L is special Lagrangian

Gauge theory: G_{2}-instanton

(3) On $\left(M^{4}, g\right.$, vol), let A be a connection on a vector bundle $E \rightarrow M$ then $F_{A}:=d A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(E n d(E)) \cong \Omega_{+}^{2} \oplus \Omega_{-}^{2}$. Call F_{A} an ASD instanton if $F_{A} \in \Omega_{-}^{2}$ i.e. $* F_{A}=-F_{A}$.

Rmk: For a CY 3-fold P^{6}, instanton means (traceless) HYM i.e. $*\left(F_{A} \wedge \omega\right)=-F_{A} \Leftrightarrow F_{A} \wedge \operatorname{Im}(\Omega)=0=F_{A} \wedge \omega \wedge \omega \Leftrightarrow F_{A} \in \mathfrak{s u}(3)=\Omega_{0}^{1}$ Prop. On $M^{7}=S_{t}^{1} \times P^{6}$ as before, A is traceless HYM on $P^{6} \Leftrightarrow A$ is G_{2}-instanton on M^{7}.

Rmk: $d_{A}^{*} F_{A}=0$ i.e. A is a Yang-Mills connection! Topological
information e.g.
$Y M(A)=\int F_{A} \wedge * F_{A}=-\int F_{A} \wedge F_{A} \wedge \varphi=-\left[p_{1}(M) \wedge \varphi\right]$

Gauge theory: G_{2}-instanton

(3) On $\left(M^{4}, g\right.$, vol), let A be a connection on a vector bundle $E \rightarrow M$ then $F_{A}:=d A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(E n d(E)) \cong \Omega_{+}^{2} \oplus \Omega_{-}^{2}$. Call F_{A} an ASD instanton if $F_{A} \in \Omega_{-}^{2}$ i.e. $* F_{A}=-F_{A}$.

On $\left(M^{7}, \varphi\right)$ we have $\Omega^{2} \cong \Omega_{7}^{2} \oplus \Omega_{14}^{2}$ since $\Omega^{2} \cong \mathfrak{s o}(7) \cong \mathbb{R}^{7} \oplus \mathfrak{g}_{2}$. Call F_{A} a G_{2}-instanton if $F_{A} \in \Omega_{14}^{2}$ i.e. $*\left(F_{A} \wedge \varphi\right)=-F_{A} \Leftrightarrow F_{A} \wedge * \varphi=0$.

Prop. On $M^{7}=S_{t}^{1} \times P^{6}$ as before, A is traceless HYM on $P^{6} \Leftrightarrow A$ is G_{2}-instanton on M^{7}

Rmk: $d_{A}^{*} F_{A}=0$ i.e. A is a Yang-Mills connection! Topological information e.g. $Y M(A)=\int F_{A} \wedge * F_{A}=-\int F_{A} \wedge F_{A} \wedge \varphi=-\left[p_{1}(M) \wedge \varphi\right]$

Gauge theory: G_{2}-instanton

(3) On $\left(M^{4}, g\right.$, vol), let A be a connection on a vector bundle $E \rightarrow M$ then $F_{A}:=d A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(E n d(E)) \cong \Omega_{+}^{2} \oplus \Omega_{-}^{2}$. Call F_{A} an ASD instanton if $F_{A} \in \Omega_{-}^{2}$ i.e. $* F_{A}=-F_{A}$.

On $\left(M^{7}, \varphi\right)$ we have $\Omega^{2} \cong \Omega_{7}^{2} \oplus \Omega_{14}^{2}$ since $\Omega^{2} \cong \mathfrak{s o}(7) \cong \mathbb{R}^{7} \oplus \mathfrak{g}_{2}$. Call F_{A} a G_{2}-instanton if $F_{A} \in \Omega_{14}^{2}$ i.e. $*\left(F_{A} \wedge \varphi\right)=-F_{A} \Leftrightarrow F_{A} \wedge * \varphi=0$.

Rmk: For a CY 3-fold P^{6}, instanton means (traceless) HYM i.e. $*\left(F_{A} \wedge \omega\right)=-F_{A} \Leftrightarrow F_{A} \wedge \operatorname{Im}(\Omega)=0=F_{A} \wedge \omega \wedge \omega \Leftrightarrow F_{A} \in \mathfrak{s u}(3)=\Omega_{0}^{1,1}$

Prop. On $M^{7}=S_{t}^{1} \times P^{6}$ as before, A is traceless HYM on $P^{6} \Leftrightarrow A$ is G_{2}-instanton on M^{7}

Rmk: $d_{A}^{*} F_{A}=0$ i.e. A is a Yang-Mills connection! Topological information e.g. $Y M(A)=\int F_{A} \wedge * F_{A}=-\int F_{A} \wedge F_{A} \wedge \varphi=-\left[p_{1}(M) \wedge \varphi\right]$

Gauge theory: G_{2}-instanton

(3) On $\left(M^{4}, g\right.$, vol), let A be a connection on a vector bundle $E \rightarrow M$ then $F_{A}:=d A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(E n d(E)) \cong \Omega_{+}^{2} \oplus \Omega_{-}^{2}$. Call F_{A} an ASD instanton if $F_{A} \in \Omega_{-}^{2}$ i.e. $* F_{A}=-F_{A}$.

On $\left(M^{7}, \varphi\right)$ we have $\Omega^{2} \cong \Omega_{7}^{2} \oplus \Omega_{14}^{2}$ since $\Omega^{2} \cong \mathfrak{s o}(7) \cong \mathbb{R}^{7} \oplus \mathfrak{g}_{2}$. Call F_{A} a G_{2}-instanton if $F_{A} \in \Omega_{14}^{2}$ i.e. $*\left(F_{A} \wedge \varphi\right)=-F_{A} \Leftrightarrow F_{A} \wedge * \varphi=0$.

Rmk: For a CY 3-fold P^{6}, instanton means (traceless) HYM i.e. $*\left(F_{A} \wedge \omega\right)=-F_{A} \Leftrightarrow F_{A} \wedge \operatorname{Im}(\Omega)=0=F_{A} \wedge \omega \wedge \omega \Leftrightarrow F_{A} \in \mathfrak{s u}(3)=\Omega_{0}^{1,1}$

Prop. On $M^{7}=S_{t}^{1} \times P^{6}$ as before, A is traceless HYM on $P^{6} \Leftrightarrow A$ is G_{2}-instanton on M^{7}.

Rmk: $d_{A}^{*} F_{A}=0$ i.e. A is a Yang-Mills connection! Topological information e.g. $Y M(A)=\int F_{A} \wedge * F_{A}=-\int F_{A} \wedge F_{A} \wedge \varphi=-\left[p_{1}(M) \wedge \varphi\right]$

Gauge theory: G_{2}-instanton

(3) On $\left(M^{4}, g\right.$, vol), let A be a connection on a vector bundle $E \rightarrow M$ then $F_{A}:=d A+\frac{1}{2}[A \wedge A] \in \Omega^{2}(E n d(E)) \cong \Omega_{+}^{2} \oplus \Omega_{-}^{2}$. Call F_{A} an ASD instanton if $F_{A} \in \Omega_{-}^{2}$ i.e. $* F_{A}=-F_{A}$.

On $\left(M^{7}, \varphi\right)$ we have $\Omega^{2} \cong \Omega_{7}^{2} \oplus \Omega_{14}^{2}$ since $\Omega^{2} \cong \mathfrak{s o}(7) \cong \mathbb{R}^{7} \oplus \mathfrak{g}_{2}$. Call F_{A} a G_{2}-instanton if $F_{A} \in \Omega_{14}^{2}$ i.e. $*\left(F_{A} \wedge \varphi\right)=-F_{A} \Leftrightarrow F_{A} \wedge * \varphi=0$.

Rmk: For a CY 3-fold P^{6}, instanton means (traceless) HYM i.e. $*\left(F_{A} \wedge \omega\right)=-F_{A} \Leftrightarrow F_{A} \wedge \operatorname{Im}(\Omega)=0=F_{A} \wedge \omega \wedge \omega \Leftrightarrow F_{A} \in \mathfrak{s u}(3)=\Omega_{0}^{1,1}$

Prop. On $M^{7}=S_{t}^{1} \times P^{6}$ as before, A is traceless HYM on $P^{6} \Leftrightarrow A$ is G_{2}-instanton on M^{7}.

Rmk: $d_{A}^{*} F_{A}=0$ i.e. A is a Yang-Mills connection! Topological information e.g.
$Y M(A)=\int F_{A} \wedge * F_{A}=-\int F_{A} \wedge F_{A} \wedge \varphi=-\left[p_{1}(M) \wedge \varphi\right]$

Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: $(P, \omega, \Omega) \longleftrightarrow(\check{P}, \check{\omega}, \check{\Omega})$: Differential geometric version: SYZ conjecture: In certain limits (large J/vol), get dual special Lagrangian torus fibration st flat $U(1)$ connection $\mathbb{T}^{3} \longleftrightarrow$ Point on \overleftarrow{T}^{3}

MMMS, LYZ: Graph of $s: B^{3} \rightarrow P$ ' is special Lagrangian iff Connection on P is dHYM i.e. $F_{A} \wedge \operatorname{Im}(\Omega)=0$ and $F_{A} \wedge \frac{1}{2} \omega \wedge \omega=\frac{1}{6} F_{A}^{3}$ (phase 1). Generally: $\operatorname{Im}\left(\left(\omega+i F_{A}\right)^{3}\right)=\tan (\theta) \operatorname{Re}\left(\left(\omega+i F_{A}\right)^{3}\right)$ since $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ is a calibration

GYZ, LL: Replace "SLag \mathbb{T}^{3} " by "co-associative \mathbb{T}^{4} ". Then graph of $s: B^{3} \rightarrow \check{M}$ is associative (+flat connection on B^{3}) iff Connection on M is deformed $G_{2}: F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$.

Note: In the non-deformed case " $F_{A}^{3 "}$ term is zero!

Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: $(P, \omega, \Omega) \longleftrightarrow(\check{P}, \check{\omega}, \check{\Omega})$: Differential geometric version: SYZ conjecture: In certain limits (large J/vol), get dual special Lagrangian torus fibration st flat $U(1)$ connection $\mathbb{T}^{3} \longleftrightarrow$ Point on $\check{\mathbb{T}}^{3}$.

Note: In the non-deformed case " $F_{A}^{3 "}$ term is zero!

Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: $(P, \omega, \Omega) \longleftrightarrow(\check{P}, \check{\omega}, \check{\Omega})$: Differential geometric version: SYZ conjecture: In certain limits (large $\mathrm{J} / \mathrm{vol}$), get dual special Lagrangian torus fibration st flat $U(1)$ connection $\mathbb{T}^{3} \longleftrightarrow$ Point on $\check{\mathbb{T}}^{3}$.

MMMS, LYZ: Graph of $s: B^{3} \rightarrow \check{P}$ is special Lagrangian iff Connection on P is dHYM i.e. $F_{A} \wedge \operatorname{Im}(\Omega)=0$ and $F_{A} \wedge \frac{1}{2} \omega \wedge \omega=\frac{1}{6} F_{A}^{3}$ (phase 1).

Note: In the non-deformed case " $F_{A}^{3 " \prime}$ term is zero!

Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: $(P, \omega, \Omega) \longleftrightarrow(\check{P}, \check{\omega}, \check{\Omega})$: Differential geometric version: SYZ conjecture: In certain limits (large J/vol), get dual special Lagrangian torus fibration st flat $U(1)$ connection $\mathbb{T}^{3} \longleftrightarrow$ Point on $\check{\mathbb{T}}^{3}$.

MMMS, LYZ: Graph of $s: B^{3} \rightarrow \check{P}$ is special Lagrangian iff Connection on P is dHYM i.e. $F_{A} \wedge \operatorname{Im}(\Omega)=0$ and $F_{A} \wedge \frac{1}{2} \omega \wedge \omega=\frac{1}{6} F_{A}^{3}$ (phase 1). Generally: $\operatorname{Im}\left(\left(\omega+i F_{A}\right)^{3}\right)=\tan (\theta) \operatorname{Re}\left(\left(\omega+i F_{A}\right)^{3}\right)$ since $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ is a calibration

Note: In the non-deformed case " $F_{A}^{3 "}$ term is zero!

Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: $(P, \omega, \Omega) \longleftrightarrow(\check{P}, \check{\omega}, \check{\Omega})$: Differential geometric version: SYZ conjecture: In certain limits (large J/vol), get dual special Lagrangian torus fibration st flat $U(1)$ connection $\mathbb{T}^{3} \longleftrightarrow$ Point on \check{T}^{3}.

MMMS, LYZ: Graph of $s: B^{3} \rightarrow \check{P}$ is special Lagrangian iff Connection on P is dHYM i.e. $F_{A} \wedge \operatorname{Im}(\Omega)=0$ and $F_{A} \wedge \frac{1}{2} \omega \wedge \omega=\frac{1}{6} F_{A}^{3}$ (phase 1). Generally: $\operatorname{Im}\left(\left(\omega+i F_{A}\right)^{3}\right)=\tan (\theta) \operatorname{Re}\left(\left(\omega+i F_{A}\right)^{3}\right)$ since $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ is a calibration

GYZ, LL: Replace "SLag \mathbb{T}^{3} " by "co-associative \mathbb{T}^{4} ". Then graph of $s: B^{3} \rightarrow \check{M}$ is associative (+ flat connection on B^{3}) iff Connection on M is deformed $G_{2}: F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$.

Note: In the non-deformed case " $F_{A}^{3 "}$ term is zero!

Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: $(P, \omega, \Omega) \longleftrightarrow(\check{P}, \check{\omega}, \check{\Omega})$: Differential geometric version: SYZ conjecture: In certain limits (large J/vol), get dual special Lagrangian torus fibration st flat $U(1)$ connection $\mathbb{T}^{3} \longleftrightarrow$ Point on \check{T}^{3}.

MMMS, LYZ: Graph of $s: B^{3} \rightarrow \check{P}$ is special Lagrangian iff Connection on P is dHYM i.e. $F_{A} \wedge \operatorname{Im}(\Omega)=0$ and $F_{A} \wedge \frac{1}{2} \omega \wedge \omega=\frac{1}{6} F_{A}^{3}$ (phase 1). Generally: $\operatorname{Im}\left(\left(\omega+i F_{A}\right)^{3}\right)=\tan (\theta) \operatorname{Re}\left(\left(\omega+i F_{A}\right)^{3}\right)$ since $\operatorname{Re}\left(e^{i \theta} \Omega\right)$ is a calibration

GYZ, LL: Replace "SLag \mathbb{T}^{3} " by "co-associative \mathbb{T}^{4} ". Then graph of $s: B^{3} \rightarrow \check{M}$ is associative (+ flat connection on B^{3}) iff Connection on M is deformed $G_{2}: F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$.

Note: In the non-deformed case " $F_{A}^{3 \text { " }}$ term is zero!

Trivial examples of $\mathrm{d} G_{2}$ instantons

Trivial here means arising by pullback from lower dimensions!
Prop. On $M^{7}=S^{1} \times P^{6}$ as before, A is dHYM (phase 1) on $P^{6} \Leftrightarrow A$ is $\mathrm{d} G_{2}$-instanton on M^{7}. Likewise: If M^{4} is HK 4-manifold and take Riemannian product with \mathbb{T}^{3}. Then A is ASD-instanton iff $d G_{2}$ (and also G_{2}) on $M^{4} \times \mathbb{T}^{3}$

By contrast to $\mathrm{d} G_{2}$, lots of dHYM examples are known, we have uniqueness and also existence results in many cases! Existence of solutions links to a notion of stability of L [Chen 20] (this verifies a mirror symmetry conjecture of Thomas-Yau). Crucial difference between $\mathrm{d} G_{2}$ and dHYM is that there is $d d^{c}$-lemma on Kähler manifolds! dHYM equation can be expressed as a Monge-Ampère type equation $F_{A}=F_{A_{0}}+d^{c} f$! No such thing in G_{2}-geometry

Trivial examples of $\mathrm{d} G_{2}$ instantons

Trivial here means arising by pullback from lower dimensions!
Prop. On $M^{7}=S^{1} \times P^{6}$ as before, A is dHYM (phase 1) on $P^{6} \Leftrightarrow A$ is $\mathrm{d} G_{2}$-instanton on M^{7}. Likewise: If M^{4} is HK 4-manifold and take Riemannian product with \mathbb{T}^{3}. Then A is ASD-instanton iff $\mathrm{d} G_{2}$ (and also G_{2}) on $M^{4} \times \mathbb{T}^{3}$.

By contrast to dG_{2}, lots of dHYM examples are known, we have uniqueness and also existence results in many cases! Existence of solutions links to a notion of stability of L [Chen 20] (this verifies a mirror symmetry conjecture of Thomas-Yau). Crucial difference between $d G_{2}$ and $d H Y M$ is that there is $d d^{c}$-lemma on Kähler manifolds! dHYM equation can be expressed as a Monge-Ampère type equation $F_{A}=F_{A_{0}}+d d^{c} f$! No such thing in G_{2}-geometry :

Trivial examples of $\mathrm{d} G_{2}$ instantons

Trivial here means arising by pullback from lower dimensions!
Prop. On $M^{7}=S^{1} \times P^{6}$ as before, A is dHYM (phase 1) on $P^{6} \Leftrightarrow A$ is $\mathrm{d} G_{2}$-instanton on M^{7}. Likewise: If M^{4} is HK 4-manifold and take Riemannian product with \mathbb{T}^{3}. Then A is ASD-instanton iff $\mathrm{d} G_{2}$ (and also G_{2}) on $M^{4} \times \mathbb{T}^{3}$.

By contrast to $d G_{2}$, lots of dHYM examples are known, we have uniqueness and also existence results in many cases! Existence of solutions links to a notion of stability of L [Chen 20] (this verifies a mirror symmetry conjecture of Thomas-Yau).

Trivial examples of $\mathrm{d} G_{2}$ instantons

Trivial here means arising by pullback from lower dimensions!
Prop. On $M^{7}=S^{1} \times P^{6}$ as before, A is dHYM (phase 1) on $P^{6} \Leftrightarrow A$ is $\mathrm{d} G_{2}$-instanton on M^{7}. Likewise: If M^{4} is HK 4-manifold and take Riemannian product with \mathbb{T}^{3}. Then A is ASD-instanton iff $\mathrm{d} G_{2}$ (and also G_{2}) on $M^{4} \times \mathbb{T}^{3}$.

By contrast to $d G_{2}$, lots of dHYM examples are known, we have uniqueness and also existence results in many cases! Existence of solutions links to a notion of stability of L [Chen 20] (this verifies a mirror symmetry conjecture of Thomas-Yau). Crucial difference between $\mathrm{d} G_{2}$ and dHYM is that there is $d d^{c}$-lemma on Kähler manifolds! dHYM equation can be expressed as a Monge-Ampère type equation $F_{A}=F_{A_{0}}+d d^{c} f$! No such thing in G_{2}-geometry :(

What do we know about deformed G_{2}-instantons?

(1) The $\mathrm{d} G_{2}$-equation arises also the critical point of a Chern-Simons type functional: Let $\mathbf{A}:=A_{0}+t\left(A-A_{0}\right)$ on $M^{7} \times[0,1]_{t}$ and consider

$$
\mathcal{F}(\mathbf{A}):=\frac{1}{2} \int_{M \times[0,1]} \frac{1}{12} F_{\mathbf{A}}^{4}-F_{\mathbf{A}}^{2} \wedge * \varphi .
$$

A is critical point of \mathcal{F} iff it is $d G_{2}$. [Karigiannis-Leung 07]
(2) The moduli space of $d G_{2}$-instantons on $\left(M^{7}, \varphi\right)$ compact has expected dimension 0 i.e. they are discrete. [Kawai-Yamamoto 20]
(3) The only known non-trivial examples are on nearly parallel G_{2}-manifolds, e.g. $S U(3) / U(1)$ and S^{7}, i.e. $\nabla \varphi \neq 0$ but instead $d \varphi=4 * \varphi$ [Lotay-Oliveira 20]. They can be used to distinguish between isometric G_{2}-structures!
(9) \exists volume $V(A)=\int \sqrt{\operatorname{det}\left(I d+F_{A}^{\sharp}\right) \text { vol } \Rightarrow \text { Gradient flow: Line bundle }}$ MCF [Jacob-Yau 14, Kawai-Yamamoto 21]. Critical points contain $\mathrm{d} G_{2}$ and $\mathrm{d} G_{2}$ are global minimisers. (only need $\mathrm{cpt}+d \varphi=0$!) Despite all this, there are no non-trivial examples on a G_{2} manifold!

What do we know about deformed G_{2}-instantons?

(1) The $\mathrm{d} G_{2}$-equation arises also the critical point of a Chern-Simons type functional: Let $\mathbf{A}:=A_{0}+t\left(A-A_{0}\right)$ on $M^{7} \times[0,1]_{t}$ and consider

$$
\mathcal{F}(\mathbf{A}):=\frac{1}{2} \int_{M \times[0,1]} \frac{1}{12} F_{\mathbf{A}}^{4}-F_{\mathbf{A}}^{2} \wedge * \varphi .
$$

A is critical point of \mathcal{F} iff it is $d G_{2}$. [Karigiannis-Leung 07]
(2) The moduli space of $\mathrm{d} G_{2}$-instantons on $\left(M^{7}, \varphi\right)$ compact has expected dimension 0 i.e. they are discrete. [Kawai-Yamamoto 20] between isometric G_{2}-structures!

(9) \exists volume $V(A)=\int \sqrt{\operatorname{det}\left(I d+F_{A}^{H}\right)}$ vol \Rightarrow Gradient flow: Line bundleMCF [Jacob-Yau 14, Kawai-Yamamoto 21]. Critical points contain $\mathrm{d} G_{2}$ and $\mathrm{d} G_{2}$ are global minimisers. (only need $\mathrm{cpt}+d \varphi=0$!) Despite all this, there are no non-trivial examples on a G_{2} manifold!

What do we know about deformed G_{2}-instantons?

(1) The $\mathrm{d} G_{2}$-equation arises also the critical point of a Chern-Simons type functional: Let $\mathbf{A}:=A_{0}+t\left(A-A_{0}\right)$ on $M^{7} \times[0,1]_{t}$ and consider

$$
\mathcal{F}(\mathbf{A}):=\frac{1}{2} \int_{M \times[0,1]} \frac{1}{12} F_{\mathbf{A}}^{4}-F_{\mathbf{A}}^{2} \wedge * \varphi .
$$

A is critical point of \mathcal{F} iff it is $d G_{2}$. [Karigiannis-Leung 07]
(2) The moduli space of $\mathrm{d} G_{2}$-instantons on $\left(M^{7}, \varphi\right)$ compact has expected dimension 0 i.e. they are discrete. [Kawai-Yamamoto 20]
(3) The only known non-trivial examples are on nearly parallel G_{2}-manifolds, e.g. $S U(3) / U(1)$ and S^{7}, i.e. $\nabla \varphi \neq 0$ but instead $d \varphi=4 * \varphi$ [Lotay-Oliveira 20]. They can be used to distinguish between isometric G_{2}-structures!
(9) \exists volume $V(A)=\int \sqrt{\operatorname{det}\left(I d+F_{A}^{\sharp}\right)}$ vol \Rightarrow Gradient flow: Line bundle MCF [Jacob-Yau 14, Kawai-Yamamoto 21]. Critical points contain $\mathrm{d} G_{2}$ and $\mathrm{d} G_{2}$ are global minimisers. (only need $\mathrm{cpt}+d \varphi=0$!)
Despite all this, there are no non-trivial examples on a G_{2} manifold!

Examples of G_{2} manifolds

The possibility of G_{2} metrics was first suggested by work of Berger 1950s
(1) First local (non-trivial) examples: cones over NK [Bryant 87]
(2) Complete examples: $\mathbb{R}^{4} \times S^{3}, \Lambda_{-}^{2}\left(S^{4}\right), \Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right)$ [Bryant-Salamon 89]
(3) Compact examples [Joyce, Kovalev, CHNP, J-K,..]
(4) More non-compact examples [BGGG, BB, FHN,..]

Too hard to find examples on compact manifold. Try non-compact with
maximal possible symmetry i.e. cohomogeneity one. Why? PDEs become ODEs!

Coho 1 implies that M / G is 1 dimensional i.e. $[0,1], S^{1},[0, \infty),(0,1)$
Ricci flat manifold + coho $1 G$ action implies only possibility is $[0, \infty)$ Let's focus on Bryant-Salamon manifolds!

Examples of G_{2} manifolds

The possibility of G_{2} metrics was first suggested by work of Berger 1950s
(1) First local (non-trivial) examples: cones over NK [Bryant 87]
(2) Complete examples: $\mathbb{R}^{4} \times S^{3}, \Lambda_{-}^{2}\left(S^{4}\right), \Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right)$ [Bryant-Salamon 89]
(3) Compact examples [Joyce, Kovalev, CHNP, J-K,..]
(3) More non-compact examples [BGGG, BB, FHN,..]

Too hard to find examples on compact manifold. Try non-compact with maximal possible symmetry i.e. cohomogeneity one. Why? PDEs become ODEs!

Coho 1 implies that M / G is 1 dimensional i.e. $[0,1], S^{1},[0, \infty),(0,1)$
Ricci flat manifold + coho $1 G$ action implies only possibility is $[0, \infty)$ Let's focus on Bryant-Salamon manifolds!

Examples of G_{2} manifolds

The possibility of G_{2} metrics was first suggested by work of Berger 1950s
(1) First local (non-trivial) examples: cones over NK [Bryant 87]
(2) Complete examples: $\mathbb{R}^{4} \times S^{3}, \Lambda_{-}^{2}\left(S^{4}\right), \Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right)$ [Bryant-Salamon 89]
(3) Compact examples [Joyce, Kovalev, CHNP, J-K,..]
(9) More non-compact examples [BGGG, BB, FHN,..]

Too hard to find examples on compact manifold. Try non-compact with maximal possible symmetry i.e. cohomogeneity one. Why? PDEs become ODEs!

Coho 1 implies that M / G is 1 dimensional i.e. $[0,1], S^{1},[0, \infty),(0,1)$ Ricci flat manifold + coho $1 G$ action implies only possibility is $[0, \infty)$ Let's focus on Bryant-Salamon manifolds!

Invariant connections on coho 1 manifolds

$M \simeq G / H_{2} \cup G / H_{1} \times \mathbb{R}^{+}$, where $H_{1} \subset H_{2} \subset G$ and H_{2} / H_{1} is a sphere.
(1) $\$\left(S^{3}\right) \cong \mathbb{R}^{4}$
$S^{3} \simeq \frac{S U(2)^{2}}{S U(2)}$$\Lambda_{-}^{2}\left(S^{4}\right) \simeq \frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{U(1) S p(1)} \times \mathbb{R}^{+}$
(3) $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right) \simeq \frac{S U(3)}{U(2)} \cup \frac{S U(3)}{T^{2}} \times \mathbb{R}^{+}$

Find connections on principal orbit G / H_{1}. Given gp homomorphism $\lambda: H_{1} \rightarrow K$ we define $K \rightarrow G \times_{\lambda} K \rightarrow G / H_{1}$. Canonical connection given by $d \lambda: \mathfrak{h}_{1} \rightarrow \mathfrak{k}$ and all other connections are given by $\Lambda:(\mathfrak{m}, \operatorname{Ad}) \rightarrow(\mathfrak{k}, \operatorname{Ad} \circ \lambda)$ H-morphism and $\mathfrak{g}=\mathfrak{h}_{1} \oplus \mathfrak{m}$. When $K=U(1)$ i.e. $\mathfrak{k} \cong \mathbb{R}$, then
(1) $\Lambda: 6 \mathbb{R} \rightarrow \mathbb{R}$
(2) $\Lambda: \mathbb{R}^{2} \oplus \mathbb{C}^{2} \rightarrow \mathbb{R}$
(3) $\Lambda: \mathbb{R}^{2} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2} \rightarrow \mathbb{R}$

Conclusion: Only in the first case we can get families of $U(1)$ connections on principal orbit! Look for d_{2}-instantons on $\mathbb{R}^{4} \times S^{3}$ with
Bryant-Salamon and BGGG metric.

Invariant connections on coho 1 manifolds

$M \simeq G / H_{2} \cup G / H_{1} \times \mathbb{R}^{+}$, where $H_{1} \subset H_{2} \subset G$ and H_{2} / H_{1} is a sphere.
(1) $\$\left(S^{3}\right) \cong \mathbb{R}^{4} \times S^{3} \simeq \frac{S U(2)^{2}}{S U(2)} \cup \frac{S U(2)^{2}}{1} \times \mathbb{R}^{+}$
(2) $\Lambda_{-}^{2}\left(S^{4}\right) \simeq \frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{U(1) S p(1)} \times \mathbb{R}^{+}$
(3) $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right) \simeq \frac{S U(3)}{U(2)} \cup \frac{S U(3)}{\mathbb{T}^{2}} \times \mathbb{R}^{+}$

Find connections on principal orbit G / H_{1}. Given gp homomorphism $\lambda: H_{1} \rightarrow K$ we define $K \rightarrow G \times_{\lambda} K \rightarrow G / H_{1}$. Canonical connection given by $d \lambda: \mathfrak{h}_{1} \rightarrow \mathfrak{k}$ and all other connections are given by $\Lambda:(\mathfrak{m}, \operatorname{Ad}) \rightarrow(\mathfrak{k}, \operatorname{Ad} \circ \lambda)$ H-morphism and $\mathfrak{g}=\mathfrak{h}_{1} \oplus \mathfrak{m}$. When $K=U(1)$ i.e. $\mathfrak{k} \cong \mathbb{R}$, then
(1) $\Lambda: 6 \mathbb{R} \rightarrow \mathbb{R}$
(2) $\Lambda: \mathbb{R}^{2} \oplus \mathbb{C}^{2} \rightarrow \mathbb{R}$
(3) $\wedge: \mathbb{R}^{2} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2} \rightarrow \mathbb{R}$

Conclusion: Only in the first case we can get families of $U(1)$ connections on principal orbit! Look for d_{2}-instantons on $\mathbb{R}^{4} \times S^{3}$ with
Bryant-Salamon and BGGG metric.

Invariant connections on coho 1 manifolds

$M \simeq G / H_{2} \cup G / H_{1} \times \mathbb{R}^{+}$, where $H_{1} \subset H_{2} \subset G$ and H_{2} / H_{1} is a sphere.
(1) $\$\left(S^{3}\right) \cong \mathbb{R}^{4} \times S^{3} \simeq \frac{S U(2)^{2}}{S U(2)} \cup \frac{S U(2)^{2}}{1} \times \mathbb{R}^{+}$
(2) $\Lambda_{-}^{2}\left(S^{4}\right) \simeq \frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{U(1) S p(1)} \times \mathbb{R}^{+}$
(3) $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right) \simeq \frac{S U(3)}{U(2)} \cup \frac{S U(3)}{\mathbb{T}^{2}} \times \mathbb{R}^{+}$

Find connections on principal orbit G / H_{1}. Given gp homomorphism $\lambda: H_{1} \rightarrow K$ we define $K \rightarrow G \times_{\lambda} K \rightarrow G / H_{1}$. Canonical connection given by $d \lambda: \mathfrak{h}_{1} \rightarrow \mathfrak{k}$ and all other connections are given by $\Lambda:(\mathfrak{m}, \operatorname{Ad}) \rightarrow(\mathfrak{k}, \operatorname{Ad} \circ \lambda)$ H-morphism and $\mathfrak{g}=\mathfrak{h}_{1} \oplus \mathfrak{m}$.

Invariant connections on coho 1 manifolds

$M \simeq G / H_{2} \cup G / H_{1} \times \mathbb{R}^{+}$, where $H_{1} \subset H_{2} \subset G$ and H_{2} / H_{1} is a sphere.
(1) $\$\left(S^{3}\right) \cong \mathbb{R}^{4} \times S^{3} \simeq \frac{S U(2)^{2}}{S U(2)} \cup \frac{S U(2)^{2}}{1} \times \mathbb{R}^{+}$
(2) $\Lambda_{-}^{2}\left(S^{4}\right) \simeq \frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{U(1) S p(1)} \times \mathbb{R}^{+}$
(3) $\Lambda_{-}^{2}\left(\mathbb{C P}^{2}\right) \simeq \frac{S U(3)}{U(2)} \cup \frac{S U(3)}{\mathbb{T}^{2}} \times \mathbb{R}^{+}$

Find connections on principal orbit G / H_{1}. Given gp homomorphism $\lambda: H_{1} \rightarrow K$ we define $K \rightarrow G \times_{\lambda} K \rightarrow G / H_{1}$. Canonical connection given by $d \lambda: \mathfrak{h}_{1} \rightarrow \mathfrak{k}$ and all other connections are given by $\Lambda:(\mathfrak{m}, \operatorname{Ad}) \rightarrow(\mathfrak{k}, \operatorname{Ad} \circ \lambda)$ H-morphism and $\mathfrak{g}=\mathfrak{h}_{1} \oplus \mathfrak{m}$. When $K=U(1)$ i.e. $\mathfrak{k} \cong \mathbb{R}$, then
(1) $\Lambda: 6 \mathbb{R} \rightarrow \mathbb{R}$
(2) $\Lambda: \mathbb{R}^{2} \oplus \mathbb{C}^{2} \rightarrow \mathbb{R}$
(3) $\Lambda: \mathbb{R}^{2} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2} \rightarrow \mathbb{R}$

Conclusion: Only in the first case we can get families of $U(1)$ connections on principal orbit! Look for $\mathrm{d} G_{2}$-instantons on $\mathbb{R}^{4} \times S^{3}$ with Bryant-Salamon and BGGG metric.

Extending solutions to singular orbit

Extending solutions from $G / H_{1} \times \mathbb{R}^{+}$to G / H_{2}. Need bundle extension, in the case of S^{3} all bundles are trivial! [Eschenburg-Wang 00] gives condition for smooth extension at singular orbit. Get singular initial value problem!

A G-invariant tensor $T \in C^{\infty}\left(\otimes^{p} T M \otimes^{q} T^{*} M\right)$ can be identified with a 1-parameter family of H_{2}-equivariant map

Extending solutions to singular orbit

Extending solutions from $G / H_{1} \times \mathbb{R}^{+}$to G / H_{2}. Need bundle extension, in the case of S^{3} all bundles are trivial! [Eschenburg-Wang 00] gives condition for smooth extension at singular orbit. Get singular initial value problem! Concretely:
A G-invariant tensor $T \in C^{\infty}\left(\otimes^{p} T M \otimes^{q} T^{*} M\right)$ can be identified with a 1-parameter family of H_{2}-equivariant map

$$
T_{t}: V \supset S^{k} \rightarrow \otimes^{p}(V \oplus \mathfrak{p}) \otimes^{q}(V \oplus \mathfrak{p})
$$

where $\mathfrak{g}=\mathfrak{h}_{2} \oplus \mathfrak{p}$ and $S^{k}=H_{2} / H_{1}$ (working in normal bundle V of singular orbit!)
Each T_{t} is a finite sum of H_{1}-invariant tensors in $\otimes^{p}(V \oplus \mathfrak{p}) \otimes^{q}(V \oplus \mathfrak{p})$. For smoothness the coefficient functions must be even or odd depending on degree of the invariant tensor and lowest order term must be at least equal to degree of tensor.

Abelian G_{2}-instantons

Smoothness condition for Bryant-Salamon and BGGG was worked out by Lotay-Oliveira. Using this they show

Lotay-Oliveira 16

For Bryant-Salamon G_{2}-instantons are $A=\frac{r^{3}-c}{r} \sum_{i=1}^{3} c_{i} \eta_{i}$ they are $A=\frac{r^{2}-81 / 16}{r^{2}-9 / 16} c_{1} \eta_{1}+\frac{(r-9 / 4) e^{r}}{\sqrt{r}(r+9 / 4)^{2}}\left(c_{2} \eta_{2}+c_{3} \eta_{3}\right)$, where r is distance to zero section, η_{i} are vertical 1 -forms and $c_{i} \in \mathbb{R}$.

Rmk: Abelian G_{2}-instanton is a linear PDE, so ODE problem is much easier. Lotay-Oliveira also construct gauge $S U(2) G_{2}$-instantons (which is non-linear)! Note that $d G_{2}$ is always non-linear although gauge is $U(1)$

Abelian G_{2}-instantons

Smoothness condition for Bryant-Salamon and BGGG was worked out by Lotay-Oliveira. Using this they show

Lotay-Oliveira 16

For Bryant-Salamon G_{2}-instantons are $A=\frac{r^{3}-c}{r} \sum_{i=1}^{3} c_{i} \eta_{i}$, and for BGGG they are $A=\frac{r^{2}-81 / 16}{r^{2}-9 / 16} c_{1} \eta_{1}+\frac{(r-9 / 4) e^{r}}{\sqrt{r}(r+9 / 4)^{2}}\left(c_{2} \eta_{2}+c_{3} \eta_{3}\right)$, where r is distance to zero section, η_{i} are vertical 1 -forms and $c_{i} \in \mathbb{R}$.

Rmk: Abelian G_{2}-instanton is a linear PDE, so ODE problem is much easier. Lotay-Oliveira also construct gauge $S U(2) G_{2}$-instantons (which is non-linear)! Note that $d G_{2}$ is always non-linear although gauge is $U(1)$:

Abelian G_{2}-instantons

Smoothness condition for Bryant-Salamon and BGGG was worked out by Lotay-Oliveira. Using this they show

Lotay-Oliveira 16

For Bryant-Salamon G_{2}-instantons are $A=\frac{r^{3}-c}{r} \sum_{i=1}^{3} c_{i} \eta_{i}$, and for BGGG they are $A=\frac{r^{2}-81 / 16}{r^{2}-9 / 16} c_{1} \eta_{1}+\frac{(r-9 / 4) e^{r}}{\sqrt{r}(r+9 / 4)^{2}}\left(c_{2} \eta_{2}+c_{3} \eta_{3}\right)$, where r is distance to zero section, η_{i} are vertical 1 -forms and $c_{i} \in \mathbb{R}$.

Rmk: Abelian G_{2}-instanton is a linear PDE, so ODE problem is much easier. Lotay-Oliveira also construct gauge $S U(2) G_{2}$-instantons (which is non-linear)! Note that $\mathrm{d} G_{2}$ is always non-linear although gauge is $U(1)$: $F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$.

Examples of $\mathrm{d} G_{2}$

F 22

For the Bryant-Salamon cone $d G_{2}$-instantons are given by $A=f(r) \sum_{i=1}^{3} c_{i} \eta_{i}$, where $\log (c f(r)) f(r)^{2}=\frac{r^{4}}{\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)}: f \sim r^{2-\varepsilon}$. For BGGG, a smooth $d_{G_{2}}$-instanton is given by $A=f(r) \eta_{1}$, where $24 \tan (f(r) / 3+c) f(r)=16 r^{2}-81: f \sim O(1)$. Here $c \in(0, \pi / 2)$

Examples of $\mathrm{d} G_{2}$

F 22

For the Bryant-Salamon cone d_{2}-instantons are given by $A=f(r) \sum_{i=1}^{3} c_{i} \eta_{i}$, where $\log (c f(r)) f(r)^{2}=\frac{r^{4}}{\left(c_{1}^{2}+c_{2}^{2}+c_{3}^{2}\right)}: f \sim r^{2-\varepsilon}$. For BGGG, a smooth d_{2}-instanton is given by $A=f(r) \eta_{1}$, where $24 \tan (f(r) / 3+c) f(r)=16 r^{2}-81: f \sim O(1)$. Here $c \in(0, \pi / 2)$

Relation betweeen G_{2} and $\mathrm{d} G_{2}$

Recall d G_{2} means $F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$. Note that to lowest order F_{A} is a G_{2}-instanton: put differently in the "large volume limit" $d G_{2}$ is G_{2} ! We can make this precise:

Prop

Given $\left\{A_{k}\right\} d G_{2}$ such that $c_{k}:=\left\|F_{A_{k}}\right\|_{\infty} \rightarrow 0$ then define $B_{k}=A_{k} / c_{k}$ so that $\left\|F_{B_{k}}\right\|=1$, the limit $B_{k} \rightarrow B_{\infty}$ is a smooth G_{2}-instanton.

Corollary
 As $c \rightarrow \frac{\pi}{2}$, in BGGG case A_{c} convergence to flat connection. Rescaling and

 taking limit yields the example of Lotay-Oliveira.One can construct local examples by evolving half-flat $S U(3)$-structures on nilmanifolds. [Chiossi-Salamon 02]
e.g on the Iwasawa manifold: We find examples of $d G_{2}$ and G_{2} instantons with very different asymptotic behaviour! Note: examples are incomplete!

Relation betweeen G_{2} and $\mathrm{d} G_{2}$

Recall d G_{2} means $F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$. Note that to lowest order F_{A} is a G_{2}-instanton: put differently in the "large volume limit" $d G_{2}$ is G_{2} ! We can make this precise:

Prop

Given $\left\{A_{k}\right\} \mathrm{d} G_{2}$ such that $c_{k}:=\left\|F_{A_{k}}\right\|_{\infty} \rightarrow 0$ then define $B_{k}=A_{k} / c_{k}$ so that $\left\|F_{B_{k}}\right\|=1$, the limit $B_{k} \rightarrow B_{\infty}$ is a smooth G_{2}-instanton.

Relation betweeen G_{2} and $\mathrm{d} G_{2}$

Recall $\mathrm{d} G_{2}$ means $F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$. Note that to lowest order F_{A} is a G_{2}-instanton: put differently in the "large volume limit" $d G_{2}$ is G_{2} ! We can make this precise:

Prop

Given $\left\{A_{k}\right\} \mathrm{d} G_{2}$ such that $c_{k}:=\left\|F_{A_{k}}\right\|_{\infty} \rightarrow 0$ then define $B_{k}=A_{k} / c_{k}$ so that $\left\|F_{B_{k}}\right\|=1$, the limit $B_{k} \rightarrow B_{\infty}$ is a smooth G_{2}-instanton.

Corollary

As $c \rightarrow \frac{\pi}{2}$, in BGGG case A_{c} convergence to flat connection. Rescaling and taking limit yields the example of Lotay-Oliveira.

> One can construct local examples by evolving half-flat $S U(3)$-structures on nilmanifolds. [Chiossi-Salamon 02]
> e.g on the Iwasawa manifold: We find examples of $d G_{2}$ and G_{2} instantons with very different asymptotic behaviour! Note: examples are incomplete!

Relation betweeen G_{2} and $\mathrm{d} G_{2}$

Recall d G_{2} means $F_{A} \wedge * \varphi=\frac{1}{6} F_{A}^{3}$. Note that to lowest order F_{A} is a G_{2}-instanton: put differently in the "large volume limit" $d G_{2}$ is G_{2} ! We can make this precise:

Prop

Given $\left\{A_{k}\right\} \mathrm{d} G_{2}$ such that $c_{k}:=\left\|F_{A_{k}}\right\|_{\infty} \rightarrow 0$ then define $B_{k}=A_{k} / c_{k}$ so that $\left\|F_{B_{k}}\right\|=1$, the limit $B_{k} \rightarrow B_{\infty}$ is a smooth G_{2}-instanton.

Corollary

As $c \rightarrow \frac{\pi}{2}$, in BGGG case A_{c} convergence to flat connection. Rescaling and taking limit yields the example of Lotay-Oliveira.

One can construct local examples by evolving half-flat $S U(3)$-structures on nilmanifolds. [Chiossi-Salamon 02]
e.g on the Iwasawa manifold: We find examples of $d G_{2}$ and G_{2} instantons with very different asymptotic behaviour! Note: examples are incomplete!

What about dSpin(7)?

Let $\left(M^{8}, \Phi\right)$ be a $\operatorname{Spin}(7)$ manifold, where Φ is the defining 4-form satisfying

$$
\left.\Phi\right|_{p}=d x_{0} \wedge \varphi+* \varphi
$$

in the analogous pointwise model as before. Similar properties as in G_{2}-case ($\nabla \Phi=0$ iff $d \Phi=0$: note that $\Phi=* \Phi$).
Φ is a calibration and calibrated submanifolds are called Cayley 4-folds. We have the irreducible splitting $\Omega^{2}(M)=\Omega_{7}^{2} \oplus \Omega_{21}^{2} \cong \mathbb{R}^{7} \oplus \operatorname{spin}(7)$. A connection A is called $\operatorname{Spin}(7)$-instanton if $*\left(F_{A} \wedge \Phi\right)=-F_{A}$ i.e. $\pi_{7}^{2}\left(F_{A}\right)=0$ and a dSpin(7)-instanton if $\pi_{7}^{2}\left(F_{A}-\frac{1}{6} * F_{A}^{3}\right)=0$ and Note: If F_{A} is $\operatorname{Spin}(7)$-instanton then $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$ since $S^{2}\left(\Omega_{21}^{2}\right)$ has no 7-dimensional component!
Are there any (non-trivial) examples?

What about dSpin(7)?

Let $\left(M^{8}, \Phi\right)$ be a $\operatorname{Spin}(7)$ manifold, where Φ is the defining 4-form satisfying

$$
\left.\Phi\right|_{p}=d x_{0} \wedge \varphi+* \varphi
$$

in the analogous pointwise model as before. Similar properties as in G_{2}-case ($\nabla \Phi=0$ iff $d \Phi=0$: note that $\Phi=* \Phi$). Φ is a calibration and calibrated submanifolds are called Cayley 4-folds.

no 7-dimensional component!
Are there any (non-trivial) examples?

What about dSpin(7)?

Let $\left(M^{8}, \Phi\right)$ be a $\operatorname{Spin}(7)$ manifold, where Φ is the defining 4-form satisfying

$$
\left.\Phi\right|_{p}=d x_{0} \wedge \varphi+* \varphi
$$

in the analogous pointwise model as before. Similar properties as in G_{2}-case ($\nabla \Phi=0$ iff $d \Phi=0$: note that $\Phi=* \Phi$). Φ is a calibration and calibrated submanifolds are called Cayley 4-folds. We have the irreducible splitting $\Omega^{2}(M)=\Omega_{7}^{2} \oplus \Omega_{21}^{2} \cong \mathbb{R}^{7} \oplus \mathfrak{s p i n}(7)$. A connection A is called $\operatorname{Spin}(7)$-instanton if $*\left(F_{A} \wedge \Phi\right)=-F_{A}$ i.e. $\pi_{7}^{2}\left(F_{A}\right)=0$

Note: If F_{A} is $\operatorname{Spin}(7)$-instanton then $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$ since $S^{2}\left(\Omega_{21}^{2}\right)$ has
no 7-dimensional component!
Are there any (non-trivial) examples?

What about dSpin(7)?

Let $\left(M^{8}, \Phi\right)$ be a $\operatorname{Spin}(7)$ manifold, where Φ is the defining 4-form satisfying

$$
\left.\Phi\right|_{p}=d x_{0} \wedge \varphi+* \varphi
$$

in the analogous pointwise model as before. Similar properties as in G_{2}-case ($\nabla \Phi=0$ iff $d \Phi=0$: note that $\Phi=* \Phi$). Φ is a calibration and calibrated submanifolds are called Cayley 4-folds. We have the irreducible splitting $\Omega^{2}(M)=\Omega_{7}^{2} \oplus \Omega_{21}^{2} \cong \mathbb{R}^{7} \oplus \mathfrak{s p i n}(7)$. A connection A is called $\operatorname{Spin}(7)$-instanton if $*\left(F_{A} \wedge \Phi\right)=-F_{A}$ i.e. $\pi_{7}^{2}\left(F_{A}\right)=0$ and a dSpin(7)-instanton if $\pi_{7}^{2}\left(F_{A}-\frac{1}{6} * F_{A}^{3}\right)=0$ and $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$. Derivation is similar as the SYZ case! [KY, LL]

What about dSpin(7)?

Let $\left(M^{8}, \Phi\right)$ be a $\operatorname{Spin}(7)$ manifold, where Φ is the defining 4-form satisfying

$$
\left.\Phi\right|_{p}=d x_{0} \wedge \varphi+* \varphi
$$

in the analogous pointwise model as before. Similar properties as in G_{2}-case ($\nabla \Phi=0$ iff $d \Phi=0$: note that $\Phi=* \Phi$). Φ is a calibration and calibrated submanifolds are called Cayley 4-folds. We have the irreducible splitting $\Omega^{2}(M)=\Omega_{7}^{2} \oplus \Omega_{21}^{2} \cong \mathbb{R}^{7} \oplus \mathfrak{s p i n}(7)$. A connection A is called $\operatorname{Spin}(7)$-instanton if $*\left(F_{A} \wedge \Phi\right)=-F_{A}$ i.e. $\pi_{7}^{2}\left(F_{A}\right)=0$ and a dSpin(7)-instanton if $\pi_{7}^{2}\left(F_{A}-\frac{1}{6} * F_{A}^{3}\right)=0$ and $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$. Derivation is similar as the SYZ case! [KY, LL] Note: If F_{A} is $\operatorname{Spin}(7)$-instanton then $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$ since $S^{2}\left(\Omega_{21}^{2}\right)$ has no 7-dimensional component!

What about dSpin(7)?

Let $\left(M^{8}, \Phi\right)$ be a $\operatorname{Spin}(7)$ manifold, where Φ is the defining 4-form satisfying

$$
\left.\Phi\right|_{p}=d x_{0} \wedge \varphi+* \varphi
$$

in the analogous pointwise model as before. Similar properties as in G_{2}-case ($\nabla \Phi=0$ iff $d \Phi=0$: note that $\Phi=* \Phi$). Φ is a calibration and calibrated submanifolds are called Cayley 4-folds. We have the irreducible splitting $\Omega^{2}(M)=\Omega_{7}^{2} \oplus \Omega_{21}^{2} \cong \mathbb{R}^{7} \oplus \mathfrak{s p i n}(7)$. A connection A is called $\operatorname{Spin}(7)$-instanton if $*\left(F_{A} \wedge \Phi\right)=-F_{A}$ i.e. $\pi_{7}^{2}\left(F_{A}\right)=0$ and a dSpin(7)-instanton if $\pi_{7}^{2}\left(F_{A}-\frac{1}{6} * F_{A}^{3}\right)=0$ and $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$. Derivation is similar as the SYZ case! [KY, LL] Note: If F_{A} is $\operatorname{Spin}(7)$-instanton then $\pi_{7}^{4}\left(F_{A} \wedge F_{A}\right)=0$ since $S^{2}\left(\Omega_{21}^{2}\right)$ has no 7-dimensional component!
Are there any (non-trivial) examples?

Example on a cone over S^{7}

As before, let's try to look for cohomogeneity one examples. Consider the spinor bundle of $S^{4}: \$\left(S^{4}\right)=\frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{S p(1)} \times \mathbb{R}^{+}$with Bryant-Salamon Spin(7) metric.

Example on a cone over S^{7}

As before, let's try to look for cohomogeneity one examples. Consider the spinor bundle of $S^{4}: \$\left(S^{4}\right)=\frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{S p(1)} \times \mathbb{R}^{+}$with Bryant-Salamon Spin(7) metric.

Prop

The connection $A=f(r) \sum_{i=1}^{3} c_{i} \eta_{i}$

$$
f(r)=\frac{3 r^{2}}{10} W\left(c r^{128 / 27}\right)^{-1 / 2}: f \sim r^{2-\varepsilon}
$$

where η_{i} are vertical 1-forms on S^{3}, gives an explicit solution on the Bryant-Salamon cone. W is the Lambert W function

Note: this is the cone over squashed S^{7} not round one $(\mathrm{d} \operatorname{Spin}(7)$ is $\operatorname{Spin}(7)$ in the latter case with $S p(2) S p(1)$-symmetry and solution is $\left.f=c r^{2}\right)$! This applies to any squashed 3-Sasakian e.g. $S U(3) / U(1)$!

Example on a cone over S^{7}

As before, let's try to look for cohomogeneity one examples. Consider the spinor bundle of $S^{4}: \$\left(S^{4}\right)=\frac{S p(2)}{S p(1) S p(1)} \cup \frac{S p(2)}{S p(1)} \times \mathbb{R}^{+}$with Bryant-Salamon Spin(7) metric.

Prop

The connection $A=f(r) \sum_{i=1}^{3} c_{i} \eta_{i}$

$$
f(r)=\frac{3 r^{2}}{10} W\left(c r^{128 / 27}\right)^{-1 / 2}: f \sim r^{2-\varepsilon}
$$

where η_{i} are vertical 1-forms on S^{3}, gives an explicit solution on the Bryant-Salamon cone. W is the Lambert W function

Note: this is the cone over squashed S^{7} not round one ($\mathrm{d} \operatorname{Spin}(7)$ is $\operatorname{Spin}(7)$ in the latter case with $S p(2) S p(1)$-symmetry and solution is $\left.f=c r^{2}\right)$! This applies to any squashed 3-Sasakian e.g. $S U(3) / U(1)$!

dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: $S^{1} \times G_{2}$, $\mathbb{T}^{2} \times C Y^{3}$! But there are also other possibilities!
In dimension 8, we have $S p(2) \subset S U(4) \subset \operatorname{Spin}(7)$ i.e. hyperKähler \subset Calabi-Yau c $\operatorname{SPin}(7)$.

Thm [KY]

Suppose A is holomorphic wrt (ω, Ω). Then dHYM wrt ω (phase 1) iff dSpin(7) wrt Φ.

dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: $S^{1} \times G_{2}$, $\mathbb{T}^{2} \times C Y^{3}$! But there are also other possibilities!
In dimension 8, we have $S p(2) \subset S U(4) \subset S \operatorname{pin}(7)$ i.e. hyperKähler \subset Calabi-Yau $\subset \operatorname{Spin}(7)$.

$$
\begin{aligned}
\Phi & =\frac{1}{2}\left(\omega_{1}^{2}+\omega_{2}^{2}-\omega_{3}^{2}\right), \\
& =\frac{1}{2} \omega^{2}+\operatorname{Re}(\Omega)
\end{aligned}
$$

Thm [KY]

Suppose A is holomorphic wrt (ω, Ω). Then dHYM wrt ω (phase 1) iff d Spin(7) wrt Φ.

dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: $S^{1} \times G_{2}$, $\mathbb{T}^{2} \times C Y^{3}$! But there are also other possibilities!
In dimension 8, we have $S p(2) \subset S U(4) \subset S \operatorname{pin}(7)$ i.e. hyperKähler \subset Calabi-Yau c Spin(7).

$$
\begin{aligned}
\Phi & =\frac{1}{2}\left(\omega_{1}^{2}+\omega_{2}^{2}-\omega_{3}^{2}\right), \\
& =\frac{1}{2} \omega^{2}+\operatorname{Re}(\Omega)
\end{aligned}
$$

Thm [KY]

Suppose A is holomorphic wrt (ω, Ω). Then dHYM wrt ω (phase 1) iff $\mathrm{d} \operatorname{Spin}(7) \mathrm{wrt} \Phi$.

Note: dHYM means $\operatorname{Im}\left(\left(\omega+i F_{A}\right)^{4}\right)=\tan (\theta) \operatorname{Re}\left(\left(\omega+i F_{A}\right)^{4}\right)$. \square
showed that $T^{*} \mathbb{C P}^{2}$ admits a complete HK metric [Calabi ansatz]. This example is in fact cohomogeneity

dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: $S^{1} \times G_{2}$, $\mathbb{T}^{2} \times C Y^{3}$! But there are also other possibilities!
In dimension 8, we have $S p(2) \subset S U(4) \subset S \operatorname{pin}(7)$ i.e. hyperKähler \subset Calabi-Yau $\subset \operatorname{Spin}(7)$.

$$
\begin{aligned}
\Phi & =\frac{1}{2}\left(\omega_{1}^{2}+\omega_{2}^{2}-\omega_{3}^{2}\right), \\
& =\frac{1}{2} \omega^{2}+\operatorname{Re}(\Omega)
\end{aligned}
$$

Thm [KY]

Suppose A is holomorphic wrt (ω, Ω). Then dHYM wrt ω (phase 1) iff $\mathrm{d} \operatorname{Spin}(7)$ wrt Φ.

Note: dHYM means $\operatorname{Im}\left(\left(\omega+i F_{A}\right)^{4}\right)=\tan (\theta) \operatorname{Re}\left(\left(\omega+i F_{A}\right)^{4}\right)$. Calabi showed that $T^{*} \mathbb{C P}^{2}$ admits a complete HK metric [Calabi ansatz]. This example is in fact cohomogeneity 1: $T^{*} \mathbb{C P}^{2}=\frac{S U(3)}{U(1) S U(2)} \cup \frac{S U(3)}{U(1)} \times \mathbb{R}^{+}$

Work in progress...

Since $\mathfrak{s u}(3)=\mathfrak{u}(1) \oplus 3 \mathbb{R} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}$, on $\left(T^{*} \mathbb{C P}^{2}, \omega_{1}, \omega_{2}, \omega_{3}\right)$ we can express the metric by

$$
g_{H K}=h^{2}(r) d r^{2}+f_{2}(r)^{2}\left(\theta_{2}^{2}\right)+f_{3}(r)^{2}\left(\theta_{3}^{2}+\theta_{4}^{2}\right)+f_{5}(r)^{2}\left(\theta_{5}^{2}+\theta_{6}^{2}\right)+f_{7}(r)^{2}\left(\theta_{7}^{2}+\theta_{8}^{2}\right),
$$

where $r \in[\sqrt{2 c}, \infty)$.
We have a 3-parameter family of connections

$$
A=k \theta_{1}+a_{2}(r) \theta_{2}+a_{3}(r) \theta_{3}+a_{4}(r) \theta_{4}
$$

and extension to $\mathbb{C P}^{2}$ depends on $H^{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)=\mathbb{Z}$ and extension of line bundle: $a_{2}(\sqrt{2 c})=k, a_{3}(\sqrt{2 c})=a_{4}(\sqrt{2 c})=0 \Rightarrow F_{A(\sqrt{2 c})}=k \omega_{\mathbb{C P}^{2}}$.

There are 3 independent Kähler forms $\omega_{1}, \omega_{2}, \omega_{3}$ but the vector field X_{1} (dual to θ_{1}) permutes ω_{2} and ω_{3} ! Suffices to restrict to $\omega_{1}, \omega_{2}, \Phi_{1}, \Phi_{2}$

Work in progress...

Since $\mathfrak{s u}(3)=\mathfrak{u}(1) \oplus 3 \mathbb{R} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}$, on $\left(T^{*} \mathbb{C P}^{2}, \omega_{1}, \omega_{2}, \omega_{3}\right)$ we can express the metric by
$g_{H K}=h^{2}(r) d r^{2}+f_{2}(r)^{2}\left(\theta_{2}^{2}\right)+f_{3}(r)^{2}\left(\theta_{3}^{2}+\theta_{4}^{2}\right)+f_{5}(r)^{2}\left(\theta_{5}^{2}+\theta_{6}^{2}\right)+f_{7}(r)^{2}\left(\theta_{7}^{2}+\theta_{8}^{2}\right)$,
where $r \in[\sqrt{2 c}, \infty)$. One can define three different $\Phi_{i}=-\omega_{i}^{2}+\omega_{j}^{2}+\omega_{k}^{2}$.

$$
A=k \theta_{1}+a_{2}(r) \theta_{2}+a_{3}(r) \theta_{3}+a_{4}(r) \theta_{4}
$$

and extension to $\mathbb{C P}^{2}$ depends on $H^{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)=\mathbb{Z}$ and extension of line bundle: $a_{2}(\sqrt{2 c})=k, a_{3}(\sqrt{2 c})=a_{4}(\sqrt{2 c})=0 \Rightarrow F_{A(\sqrt{2 c})}=k \omega_{\mathbb{C P}^{2}}$

There are 3 independent Kähler forms $\omega_{1}, \omega_{2}, \omega_{3}$ but the vector field X_{1} (dual to θ_{1}) permutes ω_{2} and ω_{3} ! Suffices to restrict to $\omega_{1}, \omega_{2}, \Phi_{1}, \Phi_{2}$

Work in progress...

Since $\mathfrak{s u}(3)=\mathfrak{u}(1) \oplus 3 \mathbb{R} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}$, on $\left(T^{*} \mathbb{C P}^{2}, \omega_{1}, \omega_{2}, \omega_{3}\right)$ we can express the metric by

$$
g_{H K}=h^{2}(r) d r^{2}+f_{2}(r)^{2}\left(\theta_{2}^{2}\right)+f_{3}(r)^{2}\left(\theta_{3}^{2}+\theta_{4}^{2}\right)+f_{5}(r)^{2}\left(\theta_{5}^{2}+\theta_{6}^{2}\right)+f_{7}(r)^{2}\left(\theta_{7}^{2}+\theta_{8}^{2}\right),
$$

where $r \in[\sqrt{2 c}, \infty)$. One can define three different $\Phi_{i}=-\omega_{i}^{2}+\omega_{j}^{2}+\omega_{k}^{2}$. We have a 3-parameter family of connections

$$
A=k \theta_{1}+a_{2}(r) \theta_{2}+a_{3}(r) \theta_{3}+a_{4}(r) \theta_{4}
$$

and extension to $\mathbb{C P}^{2}$ depends on $H^{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)=\mathbb{Z}$ and extension of line bundle: $a_{2}(\sqrt{2 c})=k, a_{3}(\sqrt{2 c})=a_{4}(\sqrt{2 c})=0 \Rightarrow F_{A(\sqrt{2 c})}=k \omega_{\mathbb{C P}^{2}}$.

There are 3 independent Kähler forms $\omega_{1}, \omega_{2}, \omega_{3}$ but the vector field X_{1} (dual to θ_{1}) permutes ω_{2} and ω_{3} ! Suffices to restrict to $\omega_{1}, \omega_{2}, \Phi_{1}, \Phi_{2}$

Work in progress...

Since $\mathfrak{s u}(3)=\mathfrak{u}(1) \oplus 3 \mathbb{R} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}$, on $\left(T^{*} \mathbb{C P}^{2}, \omega_{1}, \omega_{2}, \omega_{3}\right)$ we can express the metric by
$g_{H K}=h^{2}(r) d r^{2}+f_{2}(r)^{2}\left(\theta_{2}^{2}\right)+f_{3}(r)^{2}\left(\theta_{3}^{2}+\theta_{4}^{2}\right)+f_{5}(r)^{2}\left(\theta_{5}^{2}+\theta_{6}^{2}\right)+f_{7}(r)^{2}\left(\theta_{7}^{2}+\theta_{8}^{2}\right)$,
where $r \in[\sqrt{2 c}, \infty)$. One can define three different $\Phi_{i}=-\omega_{i}^{2}+\omega_{j}^{2}+\omega_{k}^{2}$. We have a 3-parameter family of connections

$$
A=k \theta_{1}+a_{2}(r) \theta_{2}+a_{3}(r) \theta_{3}+a_{4}(r) \theta_{4}
$$

and extension to $\mathbb{C P}^{2}$ depends on $H^{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)=\mathbb{Z}$ and extension of line bundle: $a_{2}(\sqrt{2 c})=k, a_{3}(\sqrt{2 c})=a_{4}(\sqrt{2 c})=0 \Rightarrow F_{A(\sqrt{2 c})}=k \omega_{\mathbb{C P}^{2}}$.

[^0]
Work in progress...

Since $\mathfrak{s u}(3)=\mathfrak{u}(1) \oplus 3 \mathbb{R} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}$, on $\left(T^{*} \mathbb{C P}^{2}, \omega_{1}, \omega_{2}, \omega_{3}\right)$ we can express the metric by

$$
g_{H K}=h^{2}(r) d r^{2}+f_{2}(r)^{2}\left(\theta_{2}^{2}\right)+f_{3}(r)^{2}\left(\theta_{3}^{2}+\theta_{4}^{2}\right)+f_{5}(r)^{2}\left(\theta_{5}^{2}+\theta_{6}^{2}\right)+f_{7}(r)^{2}\left(\theta_{7}^{2}+\theta_{8}^{2}\right),
$$

where $r \in[\sqrt{2 c}, \infty)$. One can define three different $\Phi_{i}=-\omega_{i}^{2}+\omega_{j}^{2}+\omega_{k}^{2}$. We have a 3-parameter family of connections

$$
A=k \theta_{1}+a_{2}(r) \theta_{2}+a_{3}(r) \theta_{3}+a_{4}(r) \theta_{4}
$$

and extension to $\mathbb{C P}^{2}$ depends on $H^{2}\left(\mathbb{C P}^{2}, \mathbb{Z}\right)=\mathbb{Z}$ and extension of line bundle: $a_{2}(\sqrt{2 c})=k, a_{3}(\sqrt{2 c})=a_{4}(\sqrt{2 c})=0 \Rightarrow F_{A(\sqrt{2 c})}=k \omega_{\mathbb{C P}^{2}}$.

There are 3 independent Kähler forms $\omega_{1}, \omega_{2}, \omega_{3}$ but the vector field X_{1} (dual to θ_{1}) permutes ω_{2} and ω_{3} ! Suffices to restrict to $\omega_{1}, \omega_{2}, \Phi_{1}, \Phi_{2}$.

Results in progress...

Thm...

A is dHYM wrt ω_{1} iff $a_{3}=a_{4}=0$ and $a_{2}(r)$ is defined by

$$
\tan (\theta)=\frac{2\left(a_{2} r^{2}-2 c k\right)\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)}{\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)^{2}-\left(a_{2} r^{2}-2 c k\right)^{2}} .
$$

Rmk: $a_{2}=2 c k / r^{2}$ is $\operatorname{Sp}(2)$ connection [Hit] hence $\operatorname{Spin}(7)$ instanton wrt

 Φ_{2}As comparison: You can play similar game on $F_{1,2}=S U(3) / \mathbb{T}^{2}$ with Kähler Einstein structure to get

note that here a_{2} is a fixed constant! Rmk: θ is fixed by a_{2} and k because of compact setting!

Results in progress...

Thm...

A is dHYM wrt ω_{1} iff $a_{3}=a_{4}=0$ and $a_{2}(r)$ is defined by

$$
\tan (\theta)=\frac{2\left(a_{2} r^{2}-2 c k\right)\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)}{\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)^{2}-\left(a_{2} r^{2}-2 c k\right)^{2}} .
$$

Rmk: $a_{2}=2 c k / r^{2}$ is $\operatorname{Sp}(2)$ connection [Hit] hence $\operatorname{Spin}(7)$ instanton wrt Φ_{2}.
As comparison: You can play similar game on $F_{1,2}=S U(3) / \mathbb{T}^{2}$ with Kähler Einstein structure to get

note that here a_{2} is a fixed constant! Rmk: θ is fixed by a_{2} and k because of compact setting!

Results in progress...

Thm...

A is dHYM wrt ω_{1} iff $a_{3}=a_{4}=0$ and $a_{2}(r)$ is defined by

$$
\tan (\theta)=\frac{2\left(a_{2} r^{2}-2 c k\right)\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)}{\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)^{2}-\left(a_{2} r^{2}-2 c k\right)^{2}} .
$$

Rmk: $a_{2}=2 c k / r^{2}$ is $\operatorname{Sp}(2)$ connection [Hit] hence $\operatorname{Spin}(7)$ instanton wrt Φ_{2}.
As comparison: You can play similar game on $F_{1,2}=S U(3) / \mathbb{T}^{2}$ with Kähler Einstein structure to get

$$
\tan (\theta)=\frac{a_{2}\left(a_{2}^{2}-k^{2}-3\right)}{3 a_{2}^{2}-k^{2}-1}
$$

note that here a_{2} is a fixed constant! Rmk: θ is fixed by a_{2} and k because of compact setting!

Results in progress...

Thm...

A is dHYM wrt ω_{1} iff $a_{3}=a_{4}=0$ and $a_{2}(r)$ is defined by

$$
\tan (\theta)=\frac{2\left(a_{2} r^{2}-2 c k\right)\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)}{\left(a_{2}^{2}-r^{4} / 4+c^{2}-k^{2}\right)^{2}-\left(a_{2} r^{2}-2 c k\right)^{2}} .
$$

Rmk: $a_{2}=2 c k / r^{2}$ is $\operatorname{Sp}(2)$ connection [Hit] hence $\operatorname{Spin}(7)$ instanton wrt Φ_{2}.

Thm...

A is dHYM wrt ω_{2} iff $a_{4}=0$ and $a_{2}(r)=2 c k / r^{2}$ is defined by

$$
\tan (\theta)=\frac{2\left(4 a_{3} r^{4} \sqrt{r^{4}-4 c^{2}}\right)\left(r^{8}-4 r^{4}\left(a_{3}^{2}+c^{2}-k^{2}\right)-16 c^{2} k^{2}\right)}{\left(4 a_{3} r^{4} \sqrt{r^{4}-4 c^{2}}\right)^{2}-\left(r^{8}-4 r^{4}\left(a_{3}^{2}+c^{2}-k^{2}\right)-16 c^{2} k^{2}\right)^{2}} .
$$

Results in progress...

Thm...

A is dHYM wrt $\Phi_{1}=\frac{1}{2}\left(-\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)$ iff either of the following holds:

$$
A=3 k \theta_{1}+\frac{6 c k}{r^{2}} \theta_{2},
$$

or,

$$
A=3 k \theta_{1}+\frac{6 c k}{r^{2}} \theta_{2}+\frac{\sqrt{\left(r^{4}+36 k^{2}\right)\left(r^{4}-4 c^{2}\right)}}{2 r^{2} \sqrt{C_{3}^{2}+C_{4}^{2}}}\left(C_{3} \theta_{3}+C_{4} \theta_{4}\right)
$$

or,

$$
A=3 k \theta_{1}+\left(\frac{1}{2} C_{0} r^{2} \pm \frac{1}{2} \sqrt{C_{0}^{2} r^{4}-24 C_{0} c k+r^{4}-4 c^{2}+36 k^{2}}\right) \theta_{2} .
$$

Rmk: Some of these examples are in fact dHYM for instance wrt ω_{2} (with

 phase 1: $C_{3}=0$). But more surprisingly this includes dHYM for all θ wrt ω_{1}. I have not yet simplified the solutions wrt Φ_{2} :/
Results in progress...

Thm...

A is dHYM wrt $\Phi_{1}=\frac{1}{2}\left(-\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)$ iff either of the following holds:

$$
A=3 k \theta_{1}+\frac{6 c k}{r^{2}} \theta_{2},
$$

or,

$$
A=3 k \theta_{1}+\frac{6 c k}{r^{2}} \theta_{2}+\frac{\sqrt{\left(r^{4}+36 k^{2}\right)\left(r^{4}-4 c^{2}\right)}}{2 r^{2} \sqrt{C_{3}^{2}+C_{4}^{2}}}\left(C_{3} \theta_{3}+C_{4} \theta_{4}\right)
$$

or,

$$
A=3 k \theta_{1}+\left(\frac{1}{2} C_{0} r^{2} \pm \frac{1}{2} \sqrt{C_{0}^{2} r^{4}-24 C_{0} c k+r^{4}-4 c^{2}+36 k^{2}}\right) \theta_{2} .
$$

Rmk: Some of these examples are in fact dHYM for instance wrt ω_{2} (with phase 1: $C_{3}=0$). But more surprisingly this includes dHYM for all θ wrt ω_{1}. I have not yet simplified the solutions wrt Φ_{2}

Results in progress...

Thm...

A is dHYM wrt $\Phi_{1}=\frac{1}{2}\left(-\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}\right)$ iff either of the following holds:

$$
A=3 k \theta_{1}+\frac{6 c k}{r^{2}} \theta_{2},
$$

or,

$$
A=3 k \theta_{1}+\frac{6 c k}{r^{2}} \theta_{2}+\frac{\sqrt{\left(r^{4}+36 k^{2}\right)\left(r^{4}-4 c^{2}\right)}}{2 r^{2} \sqrt{C_{3}^{2}+C_{4}^{2}}}\left(C_{3} \theta_{3}+C_{4} \theta_{4}\right),
$$

or,

$$
A=3 k \theta_{1}+\left(\frac{1}{2} C_{0} r^{2} \pm \frac{1}{2} \sqrt{C_{0}^{2} r^{4}-24 C_{0} c k+r^{4}-4 c^{2}+36 k^{2}}\right) \theta_{2} .
$$

Rmk: Some of these examples are in fact dHYM for instance wrt ω_{2} (with phase 1: $C_{3}=0$). But more surprisingly this includes dHYM for all θ wrt ω_{1}. I have not yet simplified the solutions wrt Φ_{2} :/

Merci beaucoup pour votre attention!

[^0]: There are 3 independent Kähler forms $\omega_{1}, \omega_{2}, \omega_{3}$ but the vector field X_{1} (dual to θ_{1}) permutes ω_{2} and ω_{3} ! Suffices to restrict to $\omega_{1}, \omega_{2}, \Phi_{1}, \Phi_{2}$

