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Plan of talk

Words in the title:
deformed instantons: special connections on complex line bundle
L→M: where M is either Kähler, G2 or Spin(7) manifold
Nomenclature: Deformed HYM connections, deformed G2/Spin(7)
instantons or deformed Donaldon-Thomas connections
Cohomogeneity one: M/G is 1-dimensional

Plan:
Background on G2 geometry
What are deformed instantons? Where they come from?
On cohomogeneity one gauge theory
Examples of dG2-instantons
Examples of dSpin(7)-instantons and dHYM connections
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G2-structures on 7-manifolds

● A G2-structure on M7 is the data of a 3-form ϕ such that at each p ∈M
∃ {xi}7

i=1 such that

ϕ∣
p
= dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356

= dx1 ∧ (dx23 + dx45 + dx67)
+Re((dx2 + idx3) ∧ (dx4 + idx5) ∧ (dx6 + idx7))

● G2 ⊂ SO(7) ⇒ ϕ determines a metric and orientation. Explicitly by

1
6
(X ⌟

ϕ) ∧ (Y ⌟
ϕ) ∧ ϕ = g(X ,Y ) vol

● (M7, ϕ) “is” G2 manifold ⇔ ∇ϕ = 0 ⇔ dϕ = 0 = d ∗ ϕ (49 PDEs!)

● Trivial example: If (P6,h, ω,Ω) is CY then M7 = S1
t × P6 is G2 with

ϕ = dt ∧ ω +Re(Ω) Hence g = dt2 + h and ∗ϕ = 1
2ω

2 − dt ∧ Im(Ω).
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Why care about G2-manifolds?

1 Admits a parallel spinor ⇒ Ric(g) = 0 : M7 is an Einstein manifold
2 Calibrated geometry

Definition
A k-form η is a calibration on (M,g) if dη = 0 and η(e1, ..ek) ≤ 1 ∀ei st
∥ei∥g = 1.

If Lk ⊂M st η∣
L
= volL then L is calibrated submanifold. Suppose L is

cpt calibrated and ∂Nk+1 = L ∪ L′ then

Vol(L) = ∫
L
η = ∫

L′
η ≤ Vol(L′).

L is minimal k-submanifold in homology class! And L is minimiser!
On (M7, ϕ) G2-manifold: calibrated by ϕ(∗ϕ) means L3(4) is
(co)-associative. On (M2n, ω,Ω) CY n-fold: calibrated by ωk/k! means L2k

complex sub-mfd, calibrated by Re(e iθΩ) means L is special Lagrangian
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Gauge theory: G2-instanton

3 On (M4,g , vol), let A be a connection on a vector bundle E →M
then FA ∶= dA + 1

2[A ∧A] ∈ Ω2(End(E)) ≅ Ω2+ ⊕Ω2−. Call FA an ASD
instanton if FA ∈ Ω2− i.e. ∗FA = −FA.

On (M7, ϕ) we have Ω2 ≅ Ω2
7 ⊕Ω2

14 since Ω2 ≅ so(7) ≅ R7 ⊕ g2. Call
FA a G2-instanton if FA ∈ Ω2

14 i.e. ∗(FA ∧ ϕ) = −FA ⇔ FA ∧ ∗ϕ = 0.

Rmk: For a CY 3-fold P6, instanton means (traceless) HYM i.e.
∗(FA ∧ ω) = −FA ⇔ FA ∧ Im(Ω) = 0 = FA ∧ω ∧ω ⇔ FA ∈ su(3) = Ω1,1

0

Prop. On M7 = S1
t × P6 as before, A is traceless HYM on P6 ⇔ A is

G2-instanton on M7.

Rmk: d∗AFA = 0 i.e. A is a Yang-Mills connection! Topological
information e.g.
YM(A) = ∫ FA ∧ ∗FA = −∫ FA ∧ FA ∧ ϕ = −[p1(M) ∧ ϕ]
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Origin of deformed connections: Physics, SYZ conjecture,...

Mirror symmetry: (P, ω,Ω) ←→ (P̌, ω̌, Ω̌) : Differential geometric version:
SYZ conjecture: In certain limits (large J/vol), get dual special Lagrangian
torus fibration st flat U(1) connection T3 ←→ Point on Ť3.

MMMS, LYZ: Graph of s ∶ B3 → P̌ is special Lagrangian iff Connection on
P is dHYM i.e. FA ∧ Im(Ω) = 0 and FA ∧ 1

2ω ∧ ω = 1
6F

3
A (phase 1).

Generally: Im((ω + iFA)3) = tan(θ)Re((ω + iFA)3) since Re(e iθΩ) is a
calibration

GYZ, LL: Replace “SLag T3” by “co-associative T4”. Then graph of
s ∶ B3 → M̌ is associative (+flat connection on B3) iff Connection on M is
deformed G2: FA ∧ ∗ϕ = 1

6F
3
A.

Note: In the non-deformed case “F 3
A” term is zero!
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s ∶ B3 → M̌ is associative (+flat connection on B3) iff Connection on M is
deformed G2: FA ∧ ∗ϕ = 1

6F
3
A.

Note: In the non-deformed case “F 3
A” term is zero!
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Trivial examples of dG2 instantons

Trivial here means arising by pullback from lower dimensions!

Prop. On M7 = S1 × P6 as before, A is dHYM (phase 1) on P6 ⇔ A is
dG2-instanton on M7. Likewise: If M4 is HK 4-manifold and take
Riemannian product with T3. Then A is ASD-instanton iff dG2 (and also
G2) on M4 ×T3.

By contrast to dG2, lots of dHYM examples are known, we have
uniqueness and also existence results in many cases! Existence of solutions
links to a notion of stability of L [Chen 20] (this verifies a mirror symmetry
conjecture of Thomas-Yau). Crucial difference between dG2 and dHYM is
that there is ddc -lemma on Kähler manifolds! dHYM equation can be
expressed as a Monge-Ampère type equation FA = FA0 + ddc f !
No such thing in G2-geometry :(
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What do we know about deformed G2-instantons?

1 The dG2-equation arises also the critical point of a Chern-Simons type
functional: Let A ∶= A0 + t(A −A0) on M7 × [0,1]t and consider

F(A) ∶= 1
2 ∫M×[0,1]

1
12

F 4
A − F 2

A ∧ ∗ϕ.

A is critical point of F iff it is dG2. [Karigiannis-Leung 07]
2 The moduli space of dG2-instantons on (M7, ϕ) compact has

expected dimension 0 i.e. they are discrete. [Kawai-Yamamoto 20]
3 The only known non-trivial examples are on nearly parallel

G2-manifolds, e.g. SU(3)/U(1) and S7, i.e. ∇ϕ ≠ 0 but instead
dϕ = 4 ∗ ϕ [Lotay-Oliveira 20]. They can be used to distinguish
between isometric G2-structures!

4 ∃ volume V (A) = ∫
√

det(Id + F ♯A) vol ⇒ Gradient flow: Line bundle
MCF [Jacob-Yau 14, Kawai-Yamamoto 21]. Critical points contain
dG2 and dG2 are global minimisers. (only need cpt + dϕ = 0!)

Despite all this, there are no non-trivial examples on a G2 manifold!
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Examples of G2 manifolds

The possibility of G2 metrics was first suggested by work of Berger 1950s
1 First local (non-trivial) examples: cones over NK [Bryant 87]
2 Complete examples: R4 × S3, Λ2−(S4), Λ2−(CP2) [Bryant-Salamon 89]
3 Compact examples [Joyce, Kovalev, CHNP, J-K,..]
4 More non-compact examples [BGGG, BB, FHN,..]

Too hard to find examples on compact manifold. Try non-compact with
maximal possible symmetry i.e. cohomogeneity one. Why? PDEs become
ODEs!

Coho 1 implies that M/G is 1 dimensional i.e. [0,1],S1, [0,∞), (0,1)
Ricci flat manifold + coho 1 G action implies only possibility is [0,∞)
Let’s focus on Bryant-Salamon manifolds!
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Invariant connections on coho 1 manifolds

M ≃ G/H2 ∪G/H1 ×R+, where H1 ⊂ H2 ⊂ G and H2/H1 is a sphere.
1 /S(S3) ≅ R4 × S3 ≃ SU(2)2

SU(2) ∪ SU(2)2
1 ×R+

2 Λ2−(S4) ≃ Sp(2)
Sp(1)Sp(1) ∪

Sp(2)
U(1)Sp(1) ×R+

3 Λ2−(CP2) ≃ SU(3)
U(2) ∪ SU(3)

T2 ×R+

Find connections on principal orbit G/H1. Given gp homomorphism
λ ∶ H1 → K we define K ↪ G ×λ K → G/H1. Canonical connection given by
dλ ∶ h1 → k and all other connections are given by Λ ∶ (m,Ad) → (k,Ad ○ λ)
H-morphism and g = h1 ⊕m. When K = U(1) i.e. k ≅ R, then

1 Λ ∶ 6R→ R
2 Λ ∶ R2 ⊕C2 → R
3 Λ ∶ R2 ⊕R2 ⊕R2 → R

Conclusion: Only in the first case we can get families of U(1) connections
on principal orbit! Look for dG2-instantons on R4 × S3 with
Bryant-Salamon and BGGG metric.
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Extending solutions to singular orbit

Extending solutions from G/H1 ×R+ to G/H2. Need bundle extension, in
the case of S3 all bundles are trivial! [Eschenburg-Wang 00] gives condition
for smooth extension at singular orbit. Get singular initial value problem!
Concretely:
A G -invariant tensor T ∈ C∞(⊗pTM ⊗q T ∗M) can be identified with a
1-parameter family of H2-equivariant map

Tt ∶ V ⊃ Sk → ⊗p(V ⊕ p) ⊗q (V ⊕ p)

where g = h2 ⊕ p and Sk = H2/H1 (working in normal bundle V of singular
orbit!)
Each Tt is a finite sum of H1-invariant tensors in ⊗p(V ⊕ p) ⊗q (V ⊕ p).
For smoothness the coefficient functions must be even or odd depending on
degree of the invariant tensor and lowest order term must be at least equal
to degree of tensor.
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Abelian G2-instantons

Smoothness condition for Bryant-Salamon and BGGG was worked out by
Lotay-Oliveira. Using this they show

Lotay-Oliveira 16

For Bryant-Salamon G2-instantons are A = r3−c
r ∑

3
i=1 ciηi , and for BGGG

they are A = r2−81/16
r2−9/16 c1η1 + (r−9/4)er√

r(r+9/4)2 (c2η2 + c3η3), where r is distance to
zero section, ηi are vertical 1-forms and ci ∈ R.

Rmk: Abelian G2-instanton is a linear PDE, so ODE problem is much
easier. Lotay-Oliveira also construct gauge SU(2) G2-instantons (which is
non-linear)! Note that dG2 is always non-linear although gauge is U(1):
FA ∧ ∗ϕ = 1

6F
3
A.

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 12 / 22



Abelian G2-instantons

Smoothness condition for Bryant-Salamon and BGGG was worked out by
Lotay-Oliveira. Using this they show

Lotay-Oliveira 16

For Bryant-Salamon G2-instantons are A = r3−c
r ∑

3
i=1 ciηi , and for BGGG

they are A = r2−81/16
r2−9/16 c1η1 + (r−9/4)er√

r(r+9/4)2 (c2η2 + c3η3), where r is distance to
zero section, ηi are vertical 1-forms and ci ∈ R.

Rmk: Abelian G2-instanton is a linear PDE, so ODE problem is much
easier. Lotay-Oliveira also construct gauge SU(2) G2-instantons (which is
non-linear)! Note that dG2 is always non-linear although gauge is U(1):
FA ∧ ∗ϕ = 1

6F
3
A.

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 12 / 22



Abelian G2-instantons

Smoothness condition for Bryant-Salamon and BGGG was worked out by
Lotay-Oliveira. Using this they show

Lotay-Oliveira 16

For Bryant-Salamon G2-instantons are A = r3−c
r ∑

3
i=1 ciηi , and for BGGG

they are A = r2−81/16
r2−9/16 c1η1 + (r−9/4)er√

r(r+9/4)2 (c2η2 + c3η3), where r is distance to
zero section, ηi are vertical 1-forms and ci ∈ R.

Rmk: Abelian G2-instanton is a linear PDE, so ODE problem is much
easier. Lotay-Oliveira also construct gauge SU(2) G2-instantons (which is
non-linear)! Note that dG2 is always non-linear although gauge is U(1):
FA ∧ ∗ϕ = 1

6F
3
A.

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 12 / 22



Examples of dG2

F 22
For the Bryant-Salamon cone dG2-instantons are given by
A = f (r)∑3

i=1 ciηi , where log(cf (r))f (r)2 = r4

(c2
1+c2

2+c2
3 )
: f ∼ r2−ε.

For BGGG, a smooth dG2-instanton is given by A = f (r)η1, where
24 tan(f (r)/3 + c)f (r) = 16r2 − 81: f ∼ O(1). Here c ∈ (0, π/2)

5
r

-10

10

20

f
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Relation betweeen G2 and dG2

Recall dG2 means FA ∧ ∗ϕ = 1
6F

3
A. Note that to lowest order FA is a

G2-instanton: put differently in the “large volume limit” dG2 is G2!
We can make this precise:

Prop
Given {Ak} dG2 such that ck ∶= ∥FAk

∥∞ → 0 then define Bk = Ak/ck so
that ∥FBk

∥ = 1, the limit Bk → B∞ is a smooth G2-instanton.

Corollary
As c → π

2 , in BGGG case Ac convergence to flat connection. Rescaling and
taking limit yields the example of Lotay-Oliveira.

One can construct local examples by evolving half-flat SU(3)-structures on
nilmanifolds. [Chiossi-Salamon 02]
e.g on the Iwasawa manifold: We find examples of dG2 and G2 instantons
with very different asymptotic behaviour! Note: examples are incomplete!
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What about dSpin(7)?
Let (M8,Φ) be a Spin(7) manifold, where Φ is the defining 4-form
satisfying

Φ∣
p
= dx0 ∧ ϕ + ∗ϕ

in the analogous pointwise model as before. Similar properties as in
G2-case (∇Φ = 0 iff dΦ = 0 : note that Φ = ∗Φ).
Φ is a calibration and calibrated submanifolds are called Cayley 4-folds.
We have the irreducible splitting Ω2(M) = Ω2

7 ⊕Ω2
21 ≅ R7 ⊕ spin(7). A

connection A is called Spin(7)-instanton if ∗(FA ∧Φ) = −FA i.e.
π2

7(FA) = 0 and a dSpin(7)-instanton if π2
7(FA − 1

6 ∗ F
3
A) = 0 and

π4
7(FA ∧ FA) = 0. Derivation is similar as the SYZ case! [KY, LL]

Note: If FA is Spin(7)-instanton then π4
7(FA ∧ FA) = 0 since S2(Ω2

21) has
no 7-dimensional component!
Are there any (non-trivial) examples?
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Example on a cone over S7

As before, let’s try to look for cohomogeneity one examples. Consider the
spinor bundle of S4: /S(S4) = Sp(2)

Sp(1)Sp(1) ∪
Sp(2)
Sp(1) ×R+ with Bryant-Salamon

Spin(7) metric.

Prop

The connection A = f (r)∑3
i=1 ciηi

f (r) = 3r2

10
W (cr128/27)−1/2 ∶ f ∼ r2−ε,

where ηi are vertical 1-forms on S3, gives an explicit solution on the
Bryant-Salamon cone. W is the Lambert W function

Note: this is the cone over squashed S7 not round one (dSpin(7) is
Spin(7) in the latter case with Sp(2)Sp(1)-symmetry and solution is
f = cr2)! This applies to any squashed 3-Sasakian e.g. SU(3)/U(1)!
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dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: S1 ×G2,
T2 × CY 3! But there are also other possibilities!
In dimension 8, we have Sp(2) ⊂ SU(4) ⊂ Spin(7) i.e. hyperKähler ⊂
Calabi-Yau ⊂ Spin(7).

Φ = 1
2
(ω2

1 + ω2
2 − ω2

3),

= 1
2
ω2 +Re(Ω)

Thm [KY]
Suppose A is holomorphic wrt (ω,Ω). Then dHYM wrt ω (phase 1) iff
dSpin(7) wrt Φ.

Note: dHYM means Im((ω + iFA)4) = tan(θ)Re((ω + iFA)4). Calabi
showed that T ∗CP2 admits a complete HK metric [Calabi ansatz]. This
example is in fact cohomogeneity 1: T ∗CP2 = SU(3)

U(1)SU(2) ∪
SU(3)
U(1) ×R+

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 17 / 22



dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: S1 ×G2,
T2 × CY 3! But there are also other possibilities!
In dimension 8, we have Sp(2) ⊂ SU(4) ⊂ Spin(7) i.e. hyperKähler ⊂
Calabi-Yau ⊂ Spin(7).

Φ = 1
2
(ω2

1 + ω2
2 − ω2

3),

= 1
2
ω2 +Re(Ω)

Thm [KY]
Suppose A is holomorphic wrt (ω,Ω). Then dHYM wrt ω (phase 1) iff
dSpin(7) wrt Φ.

Note: dHYM means Im((ω + iFA)4) = tan(θ)Re((ω + iFA)4). Calabi
showed that T ∗CP2 admits a complete HK metric [Calabi ansatz]. This
example is in fact cohomogeneity 1: T ∗CP2 = SU(3)

U(1)SU(2) ∪
SU(3)
U(1) ×R+

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 17 / 22



dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: S1 ×G2,
T2 × CY 3! But there are also other possibilities!
In dimension 8, we have Sp(2) ⊂ SU(4) ⊂ Spin(7) i.e. hyperKähler ⊂
Calabi-Yau ⊂ Spin(7).

Φ = 1
2
(ω2

1 + ω2
2 − ω2

3),

= 1
2
ω2 +Re(Ω)

Thm [KY]
Suppose A is holomorphic wrt (ω,Ω). Then dHYM wrt ω (phase 1) iff
dSpin(7) wrt Φ.

Note: dHYM means Im((ω + iFA)4) = tan(θ)Re((ω + iFA)4). Calabi
showed that T ∗CP2 admits a complete HK metric [Calabi ansatz]. This
example is in fact cohomogeneity 1: T ∗CP2 = SU(3)

U(1)SU(2) ∪
SU(3)
U(1) ×R+

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 17 / 22



dSpin(7) vs dHYM

As before we can construct trivial examples by taking products: S1 ×G2,
T2 × CY 3! But there are also other possibilities!
In dimension 8, we have Sp(2) ⊂ SU(4) ⊂ Spin(7) i.e. hyperKähler ⊂
Calabi-Yau ⊂ Spin(7).

Φ = 1
2
(ω2

1 + ω2
2 − ω2

3),

= 1
2
ω2 +Re(Ω)

Thm [KY]
Suppose A is holomorphic wrt (ω,Ω). Then dHYM wrt ω (phase 1) iff
dSpin(7) wrt Φ.

Note: dHYM means Im((ω + iFA)4) = tan(θ)Re((ω + iFA)4). Calabi
showed that T ∗CP2 admits a complete HK metric [Calabi ansatz]. This
example is in fact cohomogeneity 1: T ∗CP2 = SU(3)

U(1)SU(2) ∪
SU(3)
U(1) ×R+

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 17 / 22



Work in progress...

Since su(3) = u(1) ⊕ 3R⊕R2 ⊕R2, on (T ∗CP2, ω1, ω2, ω3) we can express
the metric by

gHK = h2(r)dr2+f2(r)2(θ2
2)+f3(r)2(θ2

3+θ2
4)+f5(r)2(θ52+θ2

6)+f7(r)2(θ2
7+θ2

8),

where r ∈ [
√
2c ,∞). One can define three different Φi = −ω2

i + ω2
j + ω2

k .
We have a 3-parameter family of connections

A = kθ1 + a2(r)θ2 + a3(r)θ3 + a4(r)θ4

and extension to CP2 depends on H2(CP2,Z) = Z and extension of line
bundle: a2(

√
2c) = k , a3(

√
2c) = a4(

√
2c) = 0 ⇒ FA(√2c) = kωCP2 .

There are 3 independent Kähler forms ω1, ω2, ω3 but the vector field X1
(dual to θ1) permutes ω2 and ω3! Suffices to restrict to ω1, ω2, Φ1, Φ2.
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Results in progress...

Thm...
A is dHYM wrt ω1 iff a3 = a4 = 0 and a2(r) is defined by

tan(θ) =
2(a2r

2 − 2ck)(a2
2 − r4/4 + c2 − k2)

(a2
2 − r4/4 + c2 − k2)2 − (a2r2 − 2ck)2 .

Rmk: a2 = 2ck/r2 is Sp(2) connection [Hit] hence Spin(7) instanton wrt
Φ2.
As comparison: You can play similar game on F1,2 = SU(3)/T2 with Kähler
Einstein structure to get

tan(θ) =
a2(a2

2 − k2 − 3)
3a2

2 − k2 − 1
,

note that here a2 is a fixed constant! Rmk: θ is fixed by a2 and k because
of compact setting!
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Rmk: a2 = 2ck/r2 is Sp(2) connection [Hit] hence Spin(7) instanton wrt
Φ2.

Thm...
A is dHYM wrt ω2 iff a4 = 0 and a2(r) = 2ck/r2 is defined by

tan(θ) =
2(4a3r

4
√
r4 − 4c2)(r8 − 4r4(a2

3 + c2 − k2) − 16c2k2)
(4a3r4

√
r4 − 4c2)2 − (r8 − 4r4(a2

3 + c2 − k2) − 16c2k2)2
.
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Results in progress...

Thm...
A is dHYM wrt Φ1 = 1

2(−ω
2
1 + ω2

2 + ω2
3) iff either of the following holds:

A = 3kθ1 +
6ck
r2 θ2,

or,

A = 3kθ1 +
6ck
r2 θ2 +

√
(r4 + 36k2)(r4 − 4c2)

2r2
√
C 2

3 + C 2
4

(C3θ3 + C4θ4),

or,

A = 3kθ1 + (1
2
C0r

2 ± 1
2

√
C 2

0 r
4 − 24C0ck + r4 − 4c2 + 36k2)θ2.

Rmk: Some of these examples are in fact dHYM for instance wrt ω2 (with
phase 1: C3 = 0). But more surprisingly this includes dHYM for all θ wrt
ω1. I have not yet simplified the solutions wrt Φ2 :/
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Merci beaucoup pour votre attention!

Udhav Fowdar (Unicamp) deformed instantons June 22, 2023 22 / 22


