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 Jaca 2012.  Introduction

CIRCLES AND TRIANGLE

● One triangle gives uniquely two circles, one inscribed C(r), the 
other circumscribed C(R). 

● Then there are infinitely many such triangles inscribed in C(R) 
and circumscribed around C(r).

● Two random circles are not the circumscribed and  the inscribed 
circles of a triangle.
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PORISM
● This kind of result is called porism:

it does not occur in general but if it occurs, it occurs for 
infinitely many cases. 

● The first known result of this type is the so-called Chapple (or 
Euler-Chapple 1746) formula for a triangle inscribed in C(R) 
and circumscribed around C(r): 2rR=R²-d².

● For a quadrilateral inscribed in C(R) and circumscribed 
around  C(r) it is done by Steiner (1827) : 

                1/(R-d)²+1/(R+d)²=1/r².
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STEINER PORISM

It can be solved by an inversion that sends the blue and red 
circles on two concentric ones. 
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PONCELET PORISM

About Chapple result Poncelet said: 

« It's a projective result. »

It means that it should be also true for two general conics. 

It leads to the Poncelet porism. It is more complicated than 
Steiner's porism.
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NAPOLEON IN RUSSIA
● Poncelet held prisoner in Saratov after the Krasnoi's battle.

● He gave the basis of modern algebraic geometry : duality, 
conservation of number, continuity principle.
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PONCELET'S CLOSURE 
THEOREM

In jail at Saratov, he wrote his famous closure theorem:

THM (1814). Let C and D be two conics on the complex 
projective plane such that there exists one n-gon inscribed
in D and circumscribed around C. Then there are infinitely
many such n-gons.
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THREE PROOFS OF
 PONCELET'S THEOREM

● By Poncelet himself : n-gon tangent to n conics

and specialize to two conics.

● By Jacobi : involutions on elliptic curve.

● By Weyr : pencil of quadrics in P³.

Our aim today is to propose another one based on vector 
bundle techniques.
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SECANT VARIETY OF
 RATIONAL CURVE

● Rational normal  curve, its secant variety, its associated bundle. 
A section of the last one corresponds to a hyperplane section of 
the first one : the n(n-1)/2 vertices of a complete tangent n-gon. 

● A Poncelet curve : a pencil of sections

(remove two lines in the ad-hoc matrix).

● It gives  a proof of Darboux theorem.
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PONCELET CURVE

● A Poncelet curve associated to a conic C is a degree (n-1) 
curve passing through the  n(n-1)/2 vertices of a complete 
n-gon.

● Theorem(Darboux). Let  S be a  curve of degree (n-1). If 
there is a complete n-gon   tangent to a smooth conic  C 
and inscribed into S, then there are  infinitely many of 
them.
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PROOF OF PONCELET PORISM

● An inscribed n-gon : n points on C. It remains 

n(n-1)/2-n points. This remaining set belongs to 

E of degree (n-3), s.t. S=CUE is a Poncelet curve.

● So any point of C is a vertex of a complete n-gon inscribed in S. 
By Bézout's theorem this n-gon has n vertices on C (if not the 
number of vertices on E is  > -n+n(n-1)/2 which is impossible for 
degree reason).
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WHICH CURVE IS A 
 PONCELET CURVE

● All the conics.

● All the cubics.

● Only a divisor of quartics : Luroth quartics.

This divisor has degree 54 (Morley 1919).

● It is the first Donaldson number q13 on P².

(Morley, Le Potier, Ottaviani-Sernesi)
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PONCELET SURFACES

● Set of planes 3-secant to rational normal curve leads to 
Poncelet surfaces.

● Net of degree  n divisors on P¹ = surface of degree n-2
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CUBIC PONCELET SURFACES

● Theorem : A cubic surface S in P³ is a Poncelet surface.

● Proof : 6 points associated to S. Triple tensor. They have a 
resolution by a persymmetric matrix.

Smooth cubic and 

its 27 lines

● (Salmon-Cayley 1849)
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